Bài 3 trang 59 Toán 9 Tập 2 Cánh diều


Giải các phương trình:

Giải Toán 9 Bài 2: Phương trình bậc hai một ẩn - Cánh diều

Bài 3 trang 59 Toán 9 Tập 2: Giải các phương trình:

a) x2 – x – 5 = 0;

b) 2x2 – 0,5x + 0,03 = 0;

c) –16x2 + 8x – 1 = 0;

d) –2x2 + 5x – 4 = 0;

e) 15x25=0;

g) 3x22x=0.

Lời giải:

a) x2 – x – 5 = 0

Phương trình có các hệ số a = 1, b = –1, c = –5,

∆ = (–1)2 – 4.1.(–5) = 21 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=1+2121=1+212;x2=12121=1212.

b) 2x2 – 0,5x + 0,03 = 0

Phương trình có các hệ số a = 2; b = –0,5; c = 0,03;

∆ = (–0,5)2 – 4.2.0,03 = 0,01 > 0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=0,5+0,0122=0,5+0,14=0,64=0,15;

x2=0,50,0122=0,50,14=0,44=0,1.

c) –16x2 + 8x – 1 = 0

Phương trình có các hệ số a = –16, b = 8, c = –1. Do b = 8 nên b’ = 4.

Ta có: ∆’ = 42 – (–16).(–1) = 0.

Do ∆’ = 0 nên phương trình có nghiệm kép x1=x2=416=14.

d) –2x2 + 5x – 4 = 0

Phương trình có các hệ số a = –2, b = 5, c = –4,

∆ = 52 – 4.(–2).(–4) = –7 < 0.

Do ∆ < 0 nên phương trình đã cho vô nghiệm.

e) 15x25=0

Phương trình có các hệ số a = 15, b = 0, c = –5. Do b = 0 nên b’ = 0.

Ta có: Δ'=02155=1>0.

Do ∆’ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=0+115=5;x2=0115=5.

g) 3x22x=0

Phương trình có các hệ số a = 3, b = 2, c = 0,

Δ=22430=2>0.

Do ∆ > 0 nên phương trình có hai nghiệm phân biệt là:

x1=2+223=226=23;

x2=2223=06=0.

Lời giải bài tập Toán 9 Bài 2: Phương trình bậc hai một ẩn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Cánh diều hay, chi tiết khác: