X

Toán 9 Cánh diều

Chứng minh trong một đường tròn: a) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy;


Câu hỏi:

Chứng minh trong một đường tròn:

a) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy;

Trả lời:

a)

Chứng minh trong một đường tròn:  a) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy; (ảnh 1)

Gọi (O) là đường tròn có đường kính vuông góc với dây AB tại H.

Xét ∆OAB có OA = OB = R nên ∆OAB cân tại O.

OAB cân tại O có OH là đường cao (do OH AB) nên đồng thời là đường trung tuyến của tam giác. Do đó H là trung điểm của AB.

Vậy đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

Xem thêm lời giải bài tập Toán 9 Cánh diều hay, chi tiết:

Câu 1:

Trong Hình 92, cho các điểm A, B, C, D, E thuộc đường tròn (O).

a) Số đo góc BOC là  Α. α.  B. 2α.  C. 180° – α.  D. 180° – 2α. (ảnh 1)

a) Số đo góc BOC là

Xem lời giải »


Câu 2:

b) Số đo góc BDC là

Xem lời giải »


Câu 3:

c) Số đo góc BEC là

Xem lời giải »


Câu 4:

a) Độ dài cung tròn có số đo 30° của đường tròn bán kính R là:

Xem lời giải »


Câu 5:

b) Đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy;

Xem lời giải »


Câu 6:

c) Hai dây bằng nhau thì cách đều tâm;

Xem lời giải »


Câu 7:

d) Hai dây cách đều tâm thì bằng nhau.

Xem lời giải »


Câu 8:

Cho hai đường tròn (I; r) và (K; R) tiếp xúc ngoài với nhau tại P với R ≠ r, đường thẳng a lần lượt tiếp xúc với (I; r) và (K; R) tại A và B, a cắt KI tại O. Đường thẳng qua P vuông góc với IK cắt đường thẳng a tại M. Chứng minh:

a) OIOK=rR;

Xem lời giải »