Giải Toán 9 trang 108 Tập 1 Cánh diều
Với Giải Toán 9 trang 108 Tập 1 trong Bài 3: Tiếp tuyến của đường tròn Toán lớp 9 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 9 trang 108.
Giải Toán 9 trang 108 Tập 1 Cánh diều
Luyện tập 3 trang 108 Toán 9 Tập 1: Cho hai đường tròn (O), (O’) cắt nhau tại hai điểm A, B sao cho đường thẳng OA là tiếp tuyến của đường tròn (O’). Chứng minh đường thẳng O’B là tiếp tuyến của đường tròn (O).
Lời giải:
Vì hai đường tròn (O), (O’) cắt nhau tại hai điểm A, B nên OA = OB và O’A = O’B.
Xét ∆OAO’ và ∆OBO’ có:
OA = OB; O’A = O’B; OO’ là cạnh chung
Do đó ∆OAO’ = ∆OBO’ (c.c.c).
Suy ra (hai góc tương ứng).
Mặt khác, OA là tiếp tuyến của đường tròn (O’) nên OA ⊥ AO’ tại A hay
Do đó hay OB ⊥ BO’ tại B nên O’B là tiếp tuyến của đường tròn (O).
Hoạt động 3 trang 108 Toán 9 Tập 1: Cho đường tròn (O; R). Các đường thẳng c, d lần lượt tiếp xúc với đường tròn (O; R) tại A, B và cắt nhau tại M (Hình 38).
a) Các tam giác MOA và MOB có bằng nhau hay không?
b) Hai đoạn thẳng MA và MB có bằng nhau hay không?
c) Tia MO có phải là tia phân giác của góc AMB hay không?
d) Tia OM có phải tia phân giác của góc AOB hay không?
Lời giải:
a) Xét ∆MOA (vuông tại A) và ∆MOB (vuông tại B) có:
OA = OB = R (A, B cùng thuộc đường tròn (O; R));
OM là cạnh chung.
Do đó ∆MOA = ∆MOB (cạnh huyền – cạnh góc vuông).
b) Vì ∆MOA = ∆MOB (câu a) nên MA = MB (hai cạnh tương ứng).
c) Vì ∆MOA = ∆MOB (câu a) nên (hai góc tương ứng)
Do đó MO là phân giác của
d) Vì ∆MOA = ∆MOB (câu a) nên (hai góc tương ứng)
Do đó OM là phân giác của
Lời giải bài tập Toán 9 Bài 3: Tiếp tuyến của đường tròn hay khác: