X

Toán 9 Chân trời sáng tạo

Bài 2 trang 17 Toán 9 Tập 2 Chân trời sáng tạo


Dùng công thức nghiệm thu gọn để giải các phương trình sau:

Giải Toán 9 Bài 2: Phương trình bậc hai một ẩn - Chân trời sáng tạo

Bài 2 trang 17 Toán 9 Tập 2: Dùng công thức nghiệm thu gọn để giải các phương trình sau:

a) x2 – x – 20 = 0;

b) 6x2 – 11x – 35 = 0;

c) 16y2 + 24y + 9 = 0;

d) 3x2 + 5x + 3 = 0;

e) x223x6=0;

g) x22+3x+23=0.

Lời giải:

a) x2 – x – 20 = 0

Ta có a = 1; b = –1; c = –20 nên ∆ = (–1)2 – 4 . 1 . (–20) = 81 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=1+812=5;  x2=1812=4.

b) 6x2 – 11x – 35 = 0

Ta có a = 6; b = –11; c = –35 nên ∆ = (–11)2 – 4 . 6 . (–11) = 961 > 0.

Vậy phương trình có hai nghiệm phân biệt là: x1=11+96126=72;  x2=1196126=53.

c) 16y2 + 24y + 9 = 0

Ta có a = 16; b' = 12; c = 9 nên ∆' = 122 – 16 . 9 = 0

Vậy phương trình có nghiệm kép x1=x2=1216=34.

d) 3x2 + 5x + 3 = 0

Ta có a = 3; b = 5; c = 3 nên ∆ = 32 – 4 . 5 . 3 = –51 < 0.

Vậy phương trình vô nghiệm.

e) x223x6=0

Ta có a=1;  b'=3;  c=6 nên Δ'=3216=3+6=9.

Vậy phương trình có hai nghiệm phân biệt là: x1=3+91=3+3;  x2=391=3+3.

g) x22+3x+23=0

Ta có a=1;  b=2+3;  c=23 nên

Δ=2+324123=7+4383=743

Vậy phương trình có hai nghiệm phân biệt là:

x1=2+3+7432=2;  x2=2+37431=3.

Lời giải bài tập Toán 9 Bài 2: Phương trình bậc hai một ẩn hay, chi tiết khác:

Xem thêm lời giải bài tập Toán lớp 9 Chân trời sáng tạo hay, chi tiết khác: