Thực hành 1 trang 77 Toán 9 Tập 2 Chân trời sáng tạo
Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?
Giải Toán 9 Bài 3: Đa giác đều và phép quay - Chân trời sáng tạo
Thực hành 1 trang 77 Toán 9 Tập 2: Cho đường tròn (O; R), trên đó lấy các điểm M, N, P, Q, R sao cho số đo các cung bằng nhau. Đa giác MNPQR có là đa giác đều không? Vì sao?
Lời giải:
Các cung chia đường tròn (O; R) thành 6 cung có số đo bằng nhau, suy ra số đo mỗi cung là 360° : 5 = 72°.
Ta có là góc nội tiếp chắn cung MN suy ra = 72o.
Xét ΔMON, có: OM = ON = R suy ra ΔMON cân tại O.
Suy ra (tính chất tam giác cân).
Do đó
Tương tự, ta có
Suy ra
Xét ΔOMN và ΔONP có:
OM = OP; ON chung.
Do đó ΔOMN = ΔONP (c.g.c).
Suy ra MN = NP (hai cạnh tương ứng).
Chứng minh tương tự, ta thu được ngũ giác MNPQR có các cạnh bằng nhau và các góc đều bằng nhau (đều bằng 108°).
Vậy MNPQR là một đa giác đều.
Lời giải bài tập Toán 9 Bài 3: Đa giác đều và phép quay hay, chi tiết khác:
Khám phá 1 trang 75 Toán 9 Tập 2: Có nhận xét gì về cạnh và góc của mỗi đa giác sau? ....