Lý thuyết Toán 9 Tỉ số lượng giác của góc nhọn - Kết nối tri thức
Haylamdo biên soạn tóm tắt lý thuyết Toán 9 Bài 11: Tỉ số lượng giác của góc nhọn sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh lớp 9 nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán 9.
Lý thuyết Toán 9 Tỉ số lượng giác của góc nhọn - Kết nối tri thức
Lý thuyết Tỉ số lượng giác của góc nhọn
1. Khái niệm tỉ số lượng giác của một góc nhọn
Cho góc nhọn α. Xét tam giác ABC vuông tại A có góc nhọn B bằng α.
Ta có:
• Tỉ số giữa cạnh đối và cạnh huyền gọi là sin của α, kí hiệu sin α.
• Tỉ số giữa cạnh kề và cạnh huyền gọi là côsin của α, kí hiệu cos α.
• Tỉ số giữa cạnh đối và cạnh kề của góc α gọi là tang của α, kí hiệu tan α.
• Tỉ số giữa cạnh kề và cạnh đối của góc α gọi là côtang của α, kí hiệu cot α.
Nhận xét:
• Trong hình trên, các tam giác vuông có cùng một góc nhọn α là đồng dạng với nhau. Vì vậy các tỉ số giữa cạnh đối và cạnh huyền (cạnh kề và cạnh huyền), cạnh đối và cạnh kề (cạnh kề và cạnh đối) của góc nhọn α là như nhau, cho dù độ dài các cạnh đối (các cạnh kề) của góc α và cạnh huyền có thể khác nhau với từng tam giác.
Chú ý: Ta có:
• sin α, cos α, tan α, cot α gọi là các tỉ số lượng giác của góc nhọn α.
• sin, côsin của góc nhọn luôn dương và bé hơn 1 vì trong tam giác vuông, cạnh huyền dài nhất.
• Ta có bảng sau:
Ví dụ: Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 = 32 + 42 = 25, suy ra BC = 5 (cm).
Ta có các tỉ số lượng giác của góc C là:
• •
• •
2. Tỉ số lượng giác của hai góc phụ nhau
Định lí:
• Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.
Chú ý:
• Cho α và β là hai góc phụ nhau, khi đó: sin α = cos β, cos α = sin β, tan α = cot β, cot α = tan β.
• Về số đo, hai góc phụ nhau có thể coi là hai góc nhọn của một tam giác vuông.
Ví dụ: Biến đổi các tỉ số lượng giác sau thành tỉ số lượng giác của góc nhỏ hơn 45°:
cos 60°, sin 75°, tan 85°, cot 72°.
Hướng dẫn giải
Ta có:
• cos 60° = sin(90° − 60°) = sin 30°.
• sin 75° = cos(90° − 75°) = cos 25°.
• tan 85° = cot(90° − 85°) = cot 5°.
• cot 72° = tan(90° − 72°) = tan 18°.
Bài tập Tỉ số lượng giác của góc nhọn
Bài 1. Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cos, tan, cot của các góc nhọn B và C khi biết:
a) AB = 5 cm, BC = 19 cm;
b) AC = 0,8 cm, AB = 1,2 cm.
Hướng dẫn giải
a) Theo định lí Pythagore, ta có: BC2 = AB2 + AC2
Suy ra AC2 = BC2 – AB2 = 192 – 52 = 336
Do đó .
Các tỉ số lượng giác của góc B và góc C là:
•
•
•
•
b) Theo định lí Pythagore, ta có:
BC2 = AB2 + AC2 = 0,82 + 1,22 = 2,08.
Suy ra .
Các tỉ số lượng giác của góc B và góc C là:
•
•
•
•
Bài 2. Cho hình chữ nhật ABCD có chiều dài và chiều rộng lần lượt là 2 và Tính . (làm tròn đến độ).
Hướng dẫn giải
Vì ABCD là hình chữ nhật nên .
Xét tam giác ACD vuông tại D, ta có: .
Do đó
Vậy góc giữa đường chéo và cạnh ngắn hơn của hình chữ nhật bằng 55°.
Bài 3. Tính chiều cao của một ngọn núi (làm tròn đến mét), biết tại hai điểm A, B cách nhau 500m, người ta nhìn thấy đỉnh núi với góc nâng lần lượt là 34° và 38°.
Hướng dẫn giải
Đặt BC = x (m).
Theo đề bài, ta có: AC = AB + BC = 500 + x (m)
Xét tam giác ACD vuông tại C, ta có:
nên
Suy ra CD = (500 + x).tan 34° (1)
Xét tam giác BCD vuông tại C, ta có:
nên
Suy ra CD = x.tan 38° (2)
Từ (1) và (2), ta có:(500 + x).tan 34° = x.tan 38°
500.tan 34° + x.tan 34° = x.tan 38°
x.tan 38° − x.tan 34° = 500.tan 34°
x.(tan 38° − tan 34°) = 500.tan 34°
Do đó (m).
Chiều cao của ngọn núi là: CD ≈ 3158,5.tan 38° ≈ 2467,7 (m).
Vậy chiều cao của ngọn núi là 2467,7 m.
Học tốt Tỉ số lượng giác của góc nhọn
Các bài học để học tốt Tỉ số lượng giác của góc nhọn Toán lớp 9 hay khác: