Lý thuyết Dấu của nhị thức bậc nhất hay, chi tiết - Toán lớp 10


Lý thuyết Dấu của nhị thức bậc nhất hay, chi tiết

Tài liệu Lý thuyết Dấu của nhị thức bậc nhất hay, chi tiết Toán lớp 10 sẽ tóm tắt kiến thức trọng tâm về Dấu của nhị thức bậc nhất từ đó giúp học sinh ôn tập để nắm vứng kiến thức môn Toán lớp 10.

Lý thuyết Dấu của nhị thức bậc nhất hay, chi tiết

I. ĐỊNH LÍ VỀ DẤU CỦA NHỊ THỨC BẬC NHẤT

1. Nhị thức bậc nhất

Nhị thức bậc nhất đối với x là biểu thức dạng f(x) = ax + b trong đó a, b là hai số đã cho, a ≠ 0.

2. Dấu của nhị thức bậc nhất

Định lí

Nhị thức f(x) = ax + b có giá trị cùng dấu với hệ số a khi x lấy các giá trị trong khoảng (-Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; +∞), trái dấu với hệ số a khi x lấy giá trị trong khoảng (-∞; -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án)

x -∞     -Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án     +∞
f(x) = ax + b trái dấu với a     0     cùng dấu với a
Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

II. XÉT DẤU TÍCH, THƯƠNG CÁC NHỊ THỨC BẬC NHẤT

Giả sử f(x) là một tích của những nhị thức bậc nhất. Áp dụng định lí về dấu của nhị thức bậc nhất có thể xét dấu từng nhân tử. Lập bảng xét dấu chung cho tất cả các nhị thức bậc nhất có mặt trong f(x) ta suy ra được dấu của f(x). Trường hợp f(x) là một thương cũng được xét tương tự.

III. ÁP DỤNG VÀO GIẢI BẤT PHƯƠNG TRÌNH

Giải bất phương trình f(x) > 0 thực chất là xét xem biểu thức f(x) nhận giá trị dương với những giá trị nào của x (do đó cũng biết f(x) nhận giá trị âm với những giá trị nào của x), làm như vậy ta nói đã xét dấu biểu thức f(x).

Hay lắm đó

1. Bất phương trình tích, bất phương trình chứa ẩn ở mẫu thức

Ví dụ. Giải bất phương trình Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ≥ 1.

Giải.

Ta biến đổi tương đương bất phương trình đã cho

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Xét dấu biểu thức f(x) = Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Ta suy ra nghiệm của bất phương trình đã cho là 0 ≤ x < 1.

2. Bất phương trình chứa ẩn trong dấu giá trị tuyệt đối

Ví dụ. Giải bất phương trình |–2x + 1| – x – 3 < 5.

Giải.

Theo định nghĩa giá trị tuyệt đối, ta có

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Do đó, ta xét phương trình trong hai khoảng

a) Với x ≤ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có hệ bất phương trình

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hệ này có nghiệm là –7 < x ≤ Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án.

Hay lắm đó

b) Với x > Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ta có hệ bất phương trình x > Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án

Hệ này có nghiệm là Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án < x < 3.

Tổng hợp lại tập nghiệm của bất phương trình đã cho là hợp của hai khoảng (–7; Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án ] và (Toán lớp 10 | Chuyên đề: Lý thuyết và Bài tập Toán 10 có đáp án; 3).

Kết luận. Bất phương trình đã cho có nghiệm là –7 < x < 3.

Bằng cách áp dụng tính chất của giá trị tuyệt đối ta có thể dễ dàng giải các bất phương trình dạng |f(x)| ≤ a và |f(x)| ≥ a với a > 0 đã cho.

Ta có

|f(x)| ≤ a <=> –a ≤ f(x) ≤ a

|f(x)| ≥ a <=> f(x) ≤ –a hoặc f(x) ≥ a (a > 0)

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có lời giải hay khác: