Bài 7 trang 40 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài tập cuối chuyên đề 2

Haylamdo biên soạn và sưu tầm lời giải Bài 7 trang 40 Chuyên đề Toán 10 trong Bài tập cuối chuyên đề 2. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 7 trang 40 Chuyên đề Toán 10: Tìm hệ số của x5 trong khai triển (2x + 3)(x – 2)6

Lời giải:

Có (2x + 3)(x – 2)6

= 2x(x – 2)6 + 3(x – 2)6.

Ta tìm hệ số của x5 trong từng khai triển: 2x(x – 2)6 và 3(x – 2)6.

+) Có: 2x(x – 2)6

= 2x[C60x6+C61x5(-2)+C62x4(-2)2+C63x3(-2)3

+C64x2(-2)4+C65x(-2)5+C66(-2)6]

= 2C60x7+2(-2)C61x6+2(-2)2C62x5+2(-2)3C63x4

+2(-2)4C64x3+2(-2)5C65x2+2(-2)6C66x.

Hệ số của x5 trong khai triển này là 2(–2)2 C62= 120.

+) Có: 3(x – 2)6

= 3[C60x6+C61x5(-2)+C62x4(-2)2+C63x3(-2)3

+C64x2(-2)4+C65x(-2)5+C66(-2)6]

=3C60x6+3(-2)C61x5+3(-2)2C62x4+3(-2)3C63x3

+3(-2)4C64x2+3(-2)5C65x+3(-2)6C66.

Hệ số của x5 trong khai triển này là 3(-2)C61 = –36.

Vậy hệ số của x5 trong khai triển (2x + 3)(x – 2)6 là 120 + (–36) = 84.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Chân trời sáng tạo hay, chi tiết khác: