Bài 8 trang 40 Chuyên đề Toán 10


Giải Chuyên đề Toán 10 Bài tập cuối chuyên đề 2

Haylamdo biên soạn và sưu tầm lời giải Bài 8 trang 40 Chuyên đề Toán 10 trong Bài tập cuối chuyên đề 2. Với lời giải chi tiết nhất hy vọng sẽ giúp học sinh biết cách làm bài tập Chuyên đề Toán 10.

Bài 8 trang 40 Chuyên đề Toán 10:

a)Tìm ba số hạng đầu tiên trong khai triển của (1 + 2x)6, các số hạng được viết theo thứ tự số mũ của x tăng dần

b) Sử dụng kết quả trên, hãy tính giá trị gần đúng của 1,026.

Lời giải:

a) Sử dụng tam giác Pascal, ta có:

(1 + 2x)6

=16+6.15(2x)+15.14(2x)2+20.13(2x)3+15.12(2x)4+6.1(2x)5+(2x)6

=1+12x+60x2+160x3+240x4+192x5+64x6.

Ba số hạng đầu tiên của khai triển là 1, 12x và 60x2.

b) Với x nhỏ thì x3, x4, x5, x6 sẽ rất nhỏ. Do đó có thể coi (1 + 2x)6 ≈ 1 + 12x + 60x2.

Khi đó 1,026 = (1 + 2 . 0,01)6 ≈ 1 + 12 . 0,01 + 60 . 0,012 = 1,126.

Xem thêm lời giải bài tập Chuyên đề Toán 10 Chân trời sáng tạo hay, chi tiết khác: