Bài 2 trang 35 Chuyên đề Toán 12
Hình 4 minh hoạ một màn hình BC có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng BA = 1,8 m. Một chiếc đèn quan sát màn hình được đặt ở vị trí O trên mặt đất. Hãy tính khoảng cách AO sao cho góc quan sát BOC là lớn nhất.
Giải Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu trong thực tiễn - Cánh diều
Bài 2 trang 35 Chuyên đề Toán 12: Hình 4 minh hoạ một màn hình BC có chiều cao 1,4 m được đặt thẳng đứng và mép dưới của màn hình cách mặt đất một khoảng BA = 1,8 m. Một chiếc đèn quan sát màn hình được đặt ở vị trí O trên mặt đất. Hãy tính khoảng cách AO sao cho góc quan sát BOC là lớn nhất.
Lời giải:
Cách 1. Để góc quan sát BOC là lớn nhất thì là nhỏ nhất.
Giả sử AO = x (m) (x > 0).
Do đó f’(x) = 0 ⇔ 1,96x3 – 11,2896x = 0 ⇔ x = 2,4 (vì x > 0).
Bảng biến thiên của hàm số:
Căn cứ bảng biến thiên, ta có tại x = 2,4.
Vậy để góc quan sát BOC là lớn nhất thì khoảng cách AO là 2,4 mét.
Cách 2. Để góc quan sát BOC là lớn nhất thì là lớn nhất.
Giả sử AO = x (m) (x > 0).
Ta có
Xét hàm số
Ta có:
Do đó f’(x) = 0 ⇔ x = 2,4 (do x > 0).
Bảng biến thiên của hàm số:
Căn cứ bảng biến thiên, ta có tại x = 2,4.
Vậy để góc quan sát BOC là lớn nhất thì khoảng cách AO là 2,4 mét.
Lời giải bài tập Chuyên đề Toán 12 Bài 2: Vận dụng đạo hàm để giải quyết một số bài toán tối ưu trong thực tiễn hay, chi tiết khác: