Bài 8 trang 72 Chuyên đề Toán 12 Chân trời sáng tạo


Bác Minh thực hiện 10 lần ghép cành một cách độc lập với nhau. Biết rằng xác suất thành công của mỗi lần ghép là 0,75. Hãy tính xác suất của các biến cố:

Giải Chuyên đề Toán 12 Bài tập cuối chuyên đề 3 - Chân trời sáng tạo

Bài 8 trang 72 Chuyên đề Toán 12: Bác Minh thực hiện 10 lần ghép cành một cách độc lập với nhau. Biết rằng xác suất thành công của mỗi lần ghép là 0,75. Hãy tính xác suất của các biến cố:

A: “Có đúng 8 trong 10 lần ghép thành công”;

B: “Có ít nhất 8 trong 10 lần ghép thành công”.

Lời giải:

Gọi T là phép thử “Ghép ngẫu nhiên một cành”. Theo đề bài, phép thử T được lặp lại 10 lần một cách độc lập. Gọi A là biến cố “Ghép cành thành công”. Ta có P(A) = 0,75.

Do phép thử T được thực hiện 10 lần một cách độc lập với nhau và xác suất xảy ra biến cố A trong mỗi lần thử đều bằng 0,75 nên X là biến cố ngẫu nhiên rời rạc có phân bố nhị thức B(10; 0,75). Do đó:

PX=k=C10k0,75k10,7510k=C10k0,75k0,2510k, với k = 0, 1, …, 10.

Xác suất của biến cố A “Có đúng 8 trong 10 lần ghép thành công” là:

PX=8=C1080,7580,251080,282.

Xác suất của biến cố B “Có ít nhất 8 trong 10 lần ghép thành công” là:

P(X ≥ 8) = P(X = 8) + P(X = 9) + P(X = 10)

=C1080,7580,25108+C1090,7590,25109+C10100,75100,251010

≈ 0,282 + 0,188 + 0,056 = 0,526.

Lời giải bài tập Chuyên đề Toán 12 Bài tập cuối chuyên đề 3 hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Chân trời sáng tạo hay, chi tiết khác: