HĐ2 trang 17 Chuyên đề Toán 12 Kết nối tri thức
Cho T là một phép thử và E là một biến cố liên quan tới phép thử T. Ta thực hiện phép thử T lặp lại n lần một cách độc lập. Ở mỗi lần thực hiện phép thử T, biến cố E có xác suất xuất hiện bằng p, tức là P(E) = p, 0 < p < 1. Gọi X là số lần xuất hiện biến cố E trong n lần thực hiện lặp lại phép thử T. Tính P(X = k) với k ∈ {0; 1; …; n}.
Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng - Kết nối tri thức
HĐ2 trang 17 Chuyên đề Toán 12: Cho T là một phép thử và E là một biến cố liên quan tới phép thử T. Ta thực hiện phép thử T lặp lại n lần một cách độc lập. Ở mỗi lần thực hiện phép thử T, biến cố E có xác suất xuất hiện bằng p, tức là P(E) = p, 0 < p < 1. Gọi X là số lần xuất hiện biến cố E trong n lần thực hiện lặp lại phép thử T. Tính P(X = k) với k ∈ {0; 1; …; n}.
Lời giải:
Vận dụng công thức Bernoulli, ta có:
P(X = 0) = (1 – p)n.
P(X = 1) .
P(X = 2) .
….
P(X = k) .
….
P(X = n) .
Lời giải bài tập Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng hay, chi tiết khác: