Luyện tập 1 trang 16 Chuyên đề Toán 12 Kết nối tri thức
Hai bạn An và Bình thi đấu bóng bàn. Xác suất thắng của An trong một ván là 0,4. Hai bạn thi đấu đủ 3 ván đấu. Người nào có số ván đấu thắng nhiều hơn là người thắng trận đấu đó. Giả sử các ván đấu là độc lập. Tính xác suất để An thắng trong trận đấu.
Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng - Kết nối tri thức
Luyện tập 1 trang 16 Chuyên đề Toán 12: Hai bạn An và Bình thi đấu bóng bàn. Xác suất thắng của An trong một ván là 0,4. Hai bạn thi đấu đủ 3 ván đấu. Người nào có số ván đấu thắng nhiều hơn là người thắng trận đấu đó. Giả sử các ván đấu là độc lập. Tính xác suất để An thắng trong trận đấu.
Lời giải:
Xác suất để An thắng trận đấu là xác suất để An thắng ít nhất hai ván đấu.
Gọi biến cố A: “An thắng trận đấu đó”.
Trường hợp 1: An thắng cả ba ván đấu
Khi đó ta có P1 = 0,43 = 0,064.
Trường hợp 2: An thắng 2 ván đấu.
Khi đó ta có: .
Vậy P(A) = P1 + P2 = 0,064 + 0,288 = 0,352.
Lời giải bài tập Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng hay, chi tiết khác: