Luyện tập 3 trang 18 Chuyên đề Toán 12 Kết nối tri thức


Khi tham gia một trò chơi, người chơi gieo một con xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 5 lần. Mỗi lần gieo nếu số chấm xuất hiện lớn hơn 4 thì người chơi được 10 điểm. Tính xác suất để người chơi nhận được ít nhất 30 điểm.

Giải Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng - Kết nối tri thức

Luyện tập 3 trang 18 Chuyên đề Toán 12: Khi tham gia một trò chơi, người chơi gieo một con xúc xắc cân đối, đồng chất một cách độc lập liên tiếp 5 lần. Mỗi lần gieo nếu số chấm xuất hiện lớn hơn 4 thì người chơi được 10 điểm. Tính xác suất để người chơi nhận được ít nhất 30 điểm.

Lời giải:

Phép thử T là: “Gieo một con xúc xắc cân đối, đồng chất”.

Biến cố E: “Số chấm xuất hiện lớn hơn 4”.

Ta có PE=26=13.

X là số lần xuất hiện biến cố E trong 5 lần thực hiện lặp lại phép thử T.

Người chơi nhận được ít nhất 30 điểm khi số lần xuất hiện số chấm lớn hơn 4 ít nhất 3 lần. Tức là khi X ≥ 3.

Theo chú ý về phân bố nhị thức ta có:

PX3=C53.133.232+C54.134.23+C55.135=40243+10243+1243=1781

Lời giải bài tập Chuyên đề Toán 12 Bài 2: Biến ngẫu nhiên có phân bố nhị thức và áp dụng hay, chi tiết khác:

Xem thêm lời giải bài tập Chuyên đề học tập Toán 12 Kết nối tri thức hay, chi tiết khác: