Cho dãy hình vuông với mỗi số nguyên dương
Câu hỏi và bài tập chương 3
Bài 49 (trang 124 sgk Đại Số và Giải Tích 11 nâng cao): Cho dãy hình vuông H1, H2, ... , Hn với mỗi số nguyên dương n, gọi un, pn và sn lần lượt là độ dài cạnh , chu vi và diện tích hình vuông Hn .
a) Giả sử dãy số (un )là một cấp cộng với công sai khác 0. Hải khi đó các dãy số (pn ) và (sn) có phải các cấp số cộng hay không? Vì sao?
b) Giả sử (un)là một cấp số nhân với công bội dương. Hỏi khi đó các dãy số (pn) và (sn)có phải là các cấp số nhân hay không? vì sao?
Lời giải:
a) Gọi d là công sai của cấp số cộng (un) ,d ≠ 0. Khi đó với mọi n ∈ N*, ta có:
Pn + 1 - pn = 4(un+ 1 - un) = 4d (không đổi )
Vậy (pn) là cấp số cộng
Sn + 1 - Sn = (un+1 - un)(un+1 + un) = d(un+1 + un)
không là hằng số( do d ≠ 0)
Vậy (Sn)không là cấp số cộng.
b)