X

Giải bài tập Toán 12

Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số: y = -x3 + 3x + 1


Toán lớp 12 Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 5 (trang 44 SGK Giải tích 12): a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số:

y = -x3 + 3x + 1

b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số m:

x3 - 3x + m = 0

Lời giải:

a) Khảo sát hàm số y = -x3 + 3x + 1

- Tập xác định: D = R

- Sự biến thiên:

+ Chiều biến thiên:

y' = -3x2 + 3 = -3(x2 - 1)

y' = 0 ⇔ -3(x2 - 1) = 0 ⇔ x = ±1.

+ Giới hạn:

Giải bài 5 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

+ Bảng biến thiên:

Giải bài 5 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Kết luận: hàm số đồng biến trên khoảng (-1; 1).

hàm số nghịch biến trên các khoảng (-∞; -1) và (1; +∞).

Hàm số đạt cực tiểu tại x = -1 ; yCT = -1.

Hàm số đạt cực đại tại x = 1 ; y = 3.

- Đồ thị:

+ Giao với Oy: (0; 1).

+ Đồ thị (C) đi qua điểm (-2; 3), (2;-1).

Giải bài 5 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

b) Ta có: x3 - 3x + m = 0 (*)

⇔ -x3 + 3x + 1 = m + 1

Số nghiệm của phương trình (*) phụ thuộc số giao điểm của đồ thị hàm số y = -x3 + 3x + 1 và đường thẳng y = m + 1.

Kết hợp với quan sát đồ thị hàm số ta có :

+ Nếu m + 1 < –1 ⇔ m < –2

⇒ (C ) cắt (d) tại 1 điểm.

⇒ phương trình (*) có 1 nghiệm.

+ Nếu m + 1 = –1 ⇔ m = –2

⇒ (C ) cắt (d) tại 2 điểm

⇒ phương trình (*) có 2 nghiệm.

+ Nếu –1 < m + 1 < 3 ⇔ –2 < m < 2

⇒ (C ) cắt (d) tại 3 điểm.

⇒ phương trình (*) có 3 nghiệm.

+ Nếu m + 1 = 3 ⇔ m = 2

⇒ (C ) cắt (d) tại 2 điểm.

⇒ phương trình (*) có hai nghiệm.

+ Nếu m + 1 > 3 ⇔ m > 2

⇒ (C ) cắt (d) tại 1 điểm

⇒ phương trình (*) có một nghiệm.

Kết luận : + Với m < -2 hoặc m > 2 thì phương trình có 1 nghiệm.

+ Với m = -2 hoặc m = 2 thì phương trình có 2 nghiệm.

+ Với -2 < m < 2 thì phương trình có 3 nghiệm.

Kiến thức áp dụng

- Các bước khảo sát hàm số và vẽ đồ thị:

1, Tìm tập xác định.

2, Khảo sát sự biến thiên

+ Tính y’

⇒ Chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tính các giới hạn

Từ đó suy ra Bảng biến thiên.

3, Vẽ đồ thị hàm số.

- Số nghiệm của phương trình f(x) = m phụ thuộc vào số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m.

Xem thêm các bài giải bài tập Toán 12 hay khác: