X

Giải bài tập Toán 12

Cho hàm số Chứng minh rằng với mọi giá trị của tham số m


Toán lớp 12 Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số

Bài 6 (trang 44 SGK Giải tích 12): Cho hàm số Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

a) Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên khoảng xác định của nó.

b) Xác định m để tiệm cận đứng của đồ thị đi qua A(-1, √2).

c) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 2.

Lời giải:

a) Với mọi tham số m ta có :

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Vậy hàm số luôn đồng biến trên mỗi khoảng xác định của nó.

b) Ta có:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 là tiệm cận đứng của đồ thị hàm số.

+ Tiệm cận đứng đi qua A(-1 ; √2)

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇔ m = 2.

Vậy với m = 2 thì tiệm cận đứng của đồ thị đi qua A(-1, √2)

c) Với m = 2 ta được hàm số: Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- TXĐ: D = R \ {-1}

- Sự biến thiên:

+ Chiều biến thiên: Theo kết quả câu a)

Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞)

+ Cực trị : Hàm số không có cực trị.

+ Tiệm cận:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận đứng là x = -1.

Lại có

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

⇒ đồ thị có tiệm cận ngang là y = 1.

+ Bảng biến thiên:

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

- Đồ thị:

+ Đồ thị cắt trục hoành tại (1/2 ; 0).

+ Đồ thị cắt trục tung tại (0 ; -1/2).

+ Đồ thị nhận I(-1 ; 1) là tâm đối xứng.

Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Kiến thức áp dụng

+ Hàm số y = f(x) có đạo hàm trên khoảng K xác định thì :

f(x) đồng biến nếu f’(x) > 0 với ∀ x ∈ K.

+ Đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = f(x) nếu có Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12 hoặc Giải bài 6 trang 44 sgk Giải tích 12 | Để học tốt Toán 12

Xem thêm các bài giải bài tập Toán 12 hay khác: