Giải SBT Toán 10 trang 69 Tập 1 Kết nối tri thức
Với Giải SBT Toán 10 trang 69 Tập 1 trong Bài 11: Tích vô hướng của hai vectơ Sách bài tập Toán 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán 10 trang 69.
Giải SBT Toán 10 trang 69 Tập 1 Kết nối tri thức
Bài 4.54 trang 69 sách bài tập Toán lớp 10 Tập 1: Trong mặt phẳng toạ độ Oxy cho ba điểm A(2; −1), B(–1; 5) và C(3m; 2m –1). Tất cả các giá trị của tham số m sao cho AB ⊥ OC là
A. m = –2;
B. m = 2;
C. m = ±2;
D. m = 3.
Lời giải:
Đáp án đúng là: B
Với A(2; −1), B(–1; 5) và C(3m; 2m –1) ta có:
và
Để AB ⊥ OC thì
−3.3m + 6.(2m – 1) = 0
−9m + 12m – 6 = 0
3m = 6
m = 2.
Vậy ta chọn phương án B.
Bài 4.55 trang 69 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC vuông tại A với AB = 1, AC = 2. Lấy M, N, P tương ứng thuộc các cạnh BC, CA, AB sao cho 2BM = MC, CN = 2NA, AP = 2PB. Giá trị của tích vô hướng bằng
A.
B.
C. 0;
D. 1.
Lời giải:
Đáp án đúng là: C
Ta có:
• 2BM = MC
• CN = 2NA
• AP = 2PB
MN // AB và PM // AC (định lí Talet đảo)
ANMP là hình bình hành
Mặt khác:
•
• MN // AB
MN = .AB = .1 =
•
CN = CA = .2 =
AN = CA – CN = 2 –
AN =
Do đó MN = AN =
Hình bình hành ANMP có MN = AN nên là hình thoi
Khi đó hai đường chéo AM và PN vuông góc với nhau
Vậy ta chọn phương án C.
Bài 4.56 trang 69 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC đều các cạnh có độ dài bằng 1. Lấy M, N, P lần lượt thuộc các cạnh BC, CA, AB sao cho BM = 2MC, CN = 2NA và AM ⊥ NP. Tỉ số của bằng
A.
B.
C.
D.
Lời giải:
Đáp án đúng là: A
Giả sử (x > 0)
Ta có:
• Ta có: MB = 2MC nên M nằm giữa B và C
Hay
Do đó
Tương tự ta cũng có và
•
•
Mặt khác ta có: AM ⊥ NP
(1)
Tam giác ABC đều có độ dài cạnh bằng 1 nên AB = AC = BC = 1 và
Ta có:
= 1.1.cos60° =
Khi đó:
(1)
(thỏa mãn)
Vậy
Ta chọn phương án A.
Bài 4.57 trang 69 sách bài tập Toán lớp 10 Tập 1: Cho tam giác ABC đều có độ dài các cạnh bằng 3a. Lấy điểm M thuộc cạnh BC sao cho MB = 2MC. Tích vô hướng của hai vectơ và bằng
A.
B.
C. a2;
D. –a2.
Lời giải:
Đáp án đúng là: B
Ta có: MB = 2MC nên M nằm giữa B và C
Hay
Do đó
Tương tự ta có
•
•
• Khi đó:
• Tam giác ABC đều có độ dài cạnh bằng 3a nên AB = AC = BC = 3a và
Ta có:
= 3a.3a.cos60° =
Do đó
= a2 – a2 = a2.
Vậy a2.
Ta chọn phương án B.
Bài 4.58 trang 69 sách bài tập Toán lớp 10 Tập 1:
A. đường tròn tâm A bán kính BC.
B. đường thẳng đi qua A và song song với BC.
C. đường tròn đường kính BC.
D. đường thẳng đi qua A và vuông góc với BC.
Lời giải:
Đáp án đúng là: A
Ta có:
•
•
Do đó tập hợp điểm M thỏa mãn yêu cầu đề bài là đường tròn tâm A bán kính BC (như hình vẽ trên).
Vậy ta chọn phương án A.
Bài 4.59 trang 69 sách bài tập Toán lớp 10 Tập 1: Cho hình bình hành ABCD tâm O. Gọi M, N theo thứ tự là trung điểm của BC, AD. Gọi I, J lần lượt là giao điểm của BD với AM, CN. Xét các vectơ khác vecto 0 có đầu mút lấy từ các điểm A, B, C, D, M, N, I, J, O.
a) Hãy chỉ ra những vectơ bằng vectơ những vectơ cùng hướng với
b) Chứng minh rằng BI = IJ = JD.
Lời giải:
a) ABCD là hình bình hành có M, N lần lượt là trung điểm của BC, AD
Nên MN là đường trung bình của hình bình hành
MN // AB // DC và MN = AB = DC.
Vậy những vectơ bằng vectơ là:
Lại có O là tâm hình bình hành nên O là trung điểm của AC và BD
Do đó NO là đường trung bình của DADC
NO // DC
Chứng minh tương tự ta cũng có OM // DC
Do đó ba điểm M, O, N thẳng hàng.
Vậy những vectơ cùng hướng với là:
b) Xét tam giác ABC có: AM, BO là hai đường trung tuyến của tam giác
Mà AM cắt BO tại I
Do đó I là trọng tâm của DABC.
và (tính chất trọng tâm) (1)
Tương tự ta cũng có J là trọng tâm của DADC.
và (tính chất trọng tâm) (2)
Mặt khác BO = DO (do O là trung điểm của BD) (3)
Từ (1), (2) và (3) ta có: BI = DJ và OI = OJ = BI = DJ
Mà IJ = IO + OJ = BI + BI = BI = DJ
Vậy BI = IJ = JD.
Lời giải Sách bài tập Toán lớp 10 Bài 11: Tích vô hướng của hai vectơ Kết nối tri thức hay khác: