Tìm hoành độ các giao điểm của đồ thị các hàm số sau


Tìm hoành độ các giao điểm của đồ thị các hàm số sau:

Giải sách bài tập Toán 11 Bài 5: Phương trình lượng giác cơ bản - Chân trời sáng tạo

Bài 6 trang 31 SBT Toán 11 Tập 1: Tìm hoành độ các giao điểm của đồ thị các hàm số sau:

a) y=sin2xπ3y=sinπ4x;

b) y=cos3xπ4y=cosx+π6.

Lời giải:

a) Hoành độ các giao điểm của đồ thị 2 hàm số là nghiệm của phương trình: sin2xπ3=sinπ4x

2xπ3=π4x+k2π,k hoặc 2xπ3=ππ4x+k2π,k

x=7π36+k2π3,khoặc x=13π12+k2π,k

Vậy hoành độ các giao điểm của đồ thị 2 hàm số là: x=7π36+k2π3,kx=13π12+k2π,k

b) Hoành độ các giao điểm của đồ thị 2 hàm số là nghiệm của phương trình:

cos3xπ4=cosx+π6

3xπ4=x+π6+k2π,k hoặc 3xπ4=x+π6+k2π,k

x=5π24+kπ,khoặc x=π48+kπ2,k

Vậy hoành độ các giao điểm của đồ thị 2 hàm số là: x=5π24+kπ,kx=π48+kπ2,k.

Lời giải SBT Toán 11 Bài 5: Phương trình lượng giác cơ bản hay khác:

Xem thêm lời giải Sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: