Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi
Một dãy số (u) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi
Giải sách bài tập Toán 11 Bài tập cuối chương 2 - Kết nối tri thức
Bài 2.50 trang 43 SBT Toán 11 Tập 1: Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi
u1 = a, un + 1 = qun + d.
Nếu q = 1 ta có cấp số cộng với công sai d, còn nếu d = 0 ta có cấp số nhân với công bội q.
a) Giả sử q ≠ 1. Dự đoán công thức số hạng tổng quát un.
b) Thiết lập công thức tính tổng Sn của n số hạng đầu của cấp số nhân cộng (un).
Lời giải:
a) Ta viết lần lượt các số hạng của dãy:
u1 = a;
u2 = qu1 + d;
u3 = qu2 + d = q(qu1 + d) + d = q2u1 + qd + d = q2u1+ d(q + 1);
u4 = qu3 + d = q(q2u1 + qd + d) + d = q3u1 + q2d + qd + d
= q3u1 + d(q2 + q + 1) = q3u1 + d (với q ≠ 1).
Làm tương tự ta được công thức số hạng tổng quát un:
un = qn – 1u1 + d(qn – 2 + qn – 3 + ... + 1) = qn – 1u1 + d.
b) Ta viết tổng n số hạng đầu như sau
Sn = u1 + u2 + ... + un
= u1 + (qu1 + d) + (qu2 + d) + ... + (qun – 1 + d)
= u1 + q(u1 + u2 + ... + un – 1) + (n – 1)d
= u1 + qSn – 1 + (n – 1)d
= qSn – 1 + a + (n – 1)d (vì u1 = a).
Như vậy, ta được (Sn) cũng là một cấp số nhân cộng với S1 = u1 = a.
Áp dụng công thức số hạng tổng quát vừa tìm được ở câu a để tính Sn ta có
Vậy
Lời giải SBT Toán 11 Bài tập cuối chương 2 hay khác:
Bài 2.32 trang 40 SBT Toán 11 Tập 1: Hãy chọn dãy số bị chặn trong các dãy số (un) sau: ....
Bài 2.33 trang 41 SBT Toán 11 Tập 1: Hãy chọn dãy số tăng trong các dãy số (un) sau: ....
Bài 2.34 trang 41 SBT Toán 11 Tập 1: Cho dãy số .Mệnh nào dưới đây là đúng? ....
Bài 2.35 trang 41 SBT Toán 11 Tập 1: Chọn cấp số cộng trong các dãy số (un) sau: ....
Bài 2.37 trang 41 SBT Toán 11 Tập 1: Chọn cấp số nhân trong các dãy số (un) sau: ....