Viết phương trình mặt cầu (S) trong mỗi trường hợp sau (S) có tâm I(−5; 7; 6) và có bán kính R = 9
Viết phương trình mặt cầu (S) trong mỗi trường hợp sau:
Giải SBT Toán 12 Chân trời sáng tạo Bài 3: Phương trình mặt cầu
Bài 2 trang 59 SBT Toán 12 Tập 2: Viết phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(−5; 7; 6) và có bán kính R = 9.
b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2).
c) (S) có đường kính EF với E(1; 5; 9), F(11; 3; 1).
Lời giải:
a) (S) có tầm I(−5; 7; 6) và bán kính R = 9 nên có phương trình là:
(x + 5)2 + (y – 7)2 + (z – 6)2 = 92 hay (x + 5)2 + (y – 7)2 + (z – 6)2 = 81.
b) (S) có tâm I(0; −3; 0) và đi qua điểm M(4; 0; −2) có:
Bán kính R = IM =
Phương trình mặt cầu (S) là: x2 + (y + 3)2 + z2 = 29.
c) Tâm I của mặt cầu (S) đường kính EF chính là trung điểm của EF.
Do đó, ta có: ⇒ I(6; 4; 5).
Bán kính R = IE =
Vậy phương trình mặt cầu (S) là: (x – 6)2 + (y – 4)2 + (z – 5)2 = 42.
Lời giải SBT Toán 12 Bài 3: Phương trình mặt cầu hay khác: