Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2


Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch. Tính xác suất một người ở trại dưỡng lão mắc bệnh tim mạch, biết rằng người đó hút thuốc.

Giải SBT Toán 12 Chân trời sáng tạo Bài 2: Công thức xác suất toàn phần và công thức Bayes

Bài 5 trang 84 SBT Toán 12 Tập 2: Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch. Tính xác suất một người ở trại dưỡng lão mắc bệnh tim mạch, biết rằng người đó hút thuốc.

Lời giải:

Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.

Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25% nên

P(A) = 0,25 và P(A¯) = 1 – 0,25 = 0,75.

Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B |A¯) = a và P(B | A) = 2a.

Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là

P(A | B) = PA|B=PAPB|APB=0,25.2a1,25a=0,4.

Lời giải SBT Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác: