Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2
Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch. Tính xác suất một người ở trại dưỡng lão mắc bệnh tim mạch, biết rằng người đó hút thuốc.
Giải SBT Toán 12 Chân trời sáng tạo Bài 2: Công thức xác suất toàn phần và công thức Bayes
Bài 5 trang 84 SBT Toán 12 Tập 2: Ở một trại dưỡng lão, tỉ lệ người mắc bệnh tim mạch là 25%. Tỉ lệ người hút thuốc trong số người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch. Tính xác suất một người ở trại dưỡng lão mắc bệnh tim mạch, biết rằng người đó hút thuốc.
Lời giải:
Gọi A là biến cố “Một người ở trại dưỡng lão mắc bệnh tim mạch” và B là biến cố “Một người ở trại dưỡng lão hút thuốc”.
Do ở trại dưỡng lão đó, tỉ lệ người đó mắc bệnh tim mạch là 25% nên
P(A) = 0,25 và P() = 1 – 0,25 = 0,75.
Gọi tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch là a (0 ≤ a ≤ 1) Do tỉ lệ người hút thuốc trong số những người mắc bệnh tim mạch gấp 2 lần tỉ lệ người hút thuốc trong số những người không mắc bệnh tim mạch nên P( B |) = a và P(B | A) = 2a.
Theo công thức xác suất toàn phần, xác suất một người ở trại dưỡng lão hút thuốc là
P(A | B) =
Lời giải SBT Toán 12 Bài 2: Công thức xác suất toàn phần và công thức Bayes hay khác: