Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí C(x) và hàm doanh thu R(x)


Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí C(x) và hàm doanh thu R(x) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau:

Giải sách bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức

Bài 1.7 trang 9 SBT Toán 12 Tập 1: Một nhà phân phối đồ chơi trẻ em xác định hàm chi phí C(x) và hàm doanh thu R(x) (đều tính bằng trăm nghìn đồng) cho một loại đồ chơi như sau:

C(x) = 1,2x – 0,0001x2, 0 ≤ x ≤ 6 000,

R(x) = 3,6x – 0,0005x2, 0 ≤ x ≤ 6 000,

trong đó x là số lượng đồ chơi loại đó được sản xuất và bán ra. Xác định khoảng của x để hàm lợi nhuận P(x) = R(x) – C(x) đồng biến trên khoảng đó. Giải thích ý nghĩa thực tiễn và kết quả nhận được.

Lời giải:

Ta có:

P(x) = R(x) – C(x) = 3,6x – 0,0005x2 − 1,2x + 0,0001x2 = 2,4x – 0,0004x2,

0 ≤ x ≤ 6 000.

P'(x) = 2,4 – 0,0008x

P'(x) > 0 ⇔ 2,4 – 0,0008x > 0 ⇔ 0 < x < 3 000.

Từ đó, hàm lợi nhuận P(x) đồng biến trên khoảng (0; 30 000). Điều này nghĩa là khi số lượng đồ chơi loại đó được sản xuất và bán ra nằm trong khoảng (0; 3 000) thì càng sản xuất và bán nhiều, lợi nhuận thu được càng lớn.

Lời giải Sách bài tập Toán lớp 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: