Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm
Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là C(x) = 25,5x + 1 000 và R(x) = 75,5x, trong đó x là số đơn vị sản phẩm đó được sản xuất và bán ra.
Giải sách bài tập Toán 12 Bài 1: Tính đơn điệu và cực trị của hàm số - Kết nối tri thức
Bài 1.8 trang 9 SBT Toán 12 Tập 1: Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là C(x) = 25,5x + 1 000 và R(x) = 75,5x, trong đó x là số đơn vị sản phẩm đó được sản xuất và bán ra.
a) Tính hàm lợi nhuận trung bình ˉP(x)=R(x)−C(x)x .
b) Tìm lợi nhuận trung bình khi mức sản xuất x lần lượt là 100, 500 và 1 000 đơn vị sản phẩm.
c) Xét tính đơn điệu của hàm lợi nhuận trung bình ˉP(x) trên khoảng (0; +∞) và tính giới hạn của hàm số này khi x → +∞. Giải thích ý nghĩa thực tiễn của kết quả nhận được.
Lời giải:
a) Ta có:
ˉP(x)=R(x)−C(x)x=75,5x−25,5x−1000x=50−1000x (triệu đồng).
Tập xác định của hàm lợi nhuận trung bình là: (0; +∞).
b) Với x = 100 thì ˉP(100)=50−1000100=40 (triệu đồng).
Với x = 500 thì ˉP(500)=50−1000500=48 (triệu đồng).
Với x = 1 000 thì ˉP(1000)=50−10001000=49 (triệu đồng).
c) Ta có: ˉP(x)=50−1000x
P' > 0 với mọi x ∈ (0; +∞).
Vậy hàm lợi nhuận trung bình đồng biến trên khoảng (0; +∞).
Mặt khác,
Ta có bảng biến thiên như sau:
Như vậy, mặc dù lợi nhuận trung bình luôn tăng khi mức sản xuất tăng nhưng không vượt quá 50 triệu đồng.
Lời giải Sách bài tập Toán lớp 12 Bài 1: Tính đơn điệu và cực trị của hàm số hay khác: