Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là


Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là:

Giải sách bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân - Kết nối tri thức

Bài 4.30 trang 18 SBT Toán 12 Tập 2: Một trận dịch lây lan đến mức sau khi bùng phát t tuần số người nhiễm bệnh là:

N1(t) = 0,1t2 + 0,5t + 150, 0 ≤ t ≤ 50.

Hai mươi lăm tuần sau dịch sẽ bùng phát, một loại vắc xin đã được phát triển và tiêm cho công chúng. Khi đó, số người nhiễm bệnh được điều chỉnh theo mô hình

N2(t) = −0,2t2 + 6t + 200, 25 ≤ t ≤ 50.

a) Thời điểm t để sau khi tiêm vắc xin thì dịch bệnh kết thúc, tức là số người nhiễm bệnh N2(t) = 0.

b) Ước tính gần đúng số người mà vắc xin đã ngăn ngừa khỏi dịch bệnh trong thời gian xảy ra dịch bệnh.

Lời giải:

a) Thời gian t mà dịch bệnh kết thúc thỏa mãn phương trình:

−0,2t2 + 6t + 200 = 0 ⇔ t = 50 (vì t ≥ 0).

b) Như vậy khi có vắc xin tiêm cho công chúng từ tuần thứ hai mươi lăm tới tuần thứ năm mươi khi kết thúc dịch (theo mô hình chỉ ra).

Số người mà vắc xin đã ngăn ngừa khỏi bệnh trong thời gian xảy ra dịch bệnh là:

2550N1tN2tdt=25500,3t25,5t50dt

= 0,1t35,5.t2250t2550 ≈ 4 531

Lời giải Sách bài tập Toán lớp 12 Bài 13: Ứng dụng hình học của tích phân hay khác:

Xem thêm các bài giải sách bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác: