Giao hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm
Giao hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 là
Giải sách bài tập Toán 12 Bài tập cuối chương 6 - Kết nối tri thức
Bài 6.15 trang 46 SBT Toán 12 Tập 2: Giao hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 7 là
A. .
B. .
C. .
D. .
Lời giải:
Đáp án đúng là: B
Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;
B là biến cố: “Có một con xúc xắc xuất hiện 5 chấm”.
Do đó, P(A | B) là xác suất để chọn được hai xúc xắc có tổng số chấm là 7, biết một con xúc xắc có 5 chấm.
Ta có: A = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}.
B = {(1; 5); (2; 5); (3; 5); (4; 5); (5; 5); (6; 5); (5; 6); (5; 4); (5; 3); (5; 2); (5; 1)}.
AB = A ∩ B = {(2; 5); (5; 2)}.
Từ đó, n(B) = 11, n(AB) = 2.
Suy ra P(B) = , P(AB) = .
Vậy P(A | B) = .
Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 6 hay khác: