Có 3 hộp, mỗi hộp chứa 3 tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ
Giải sách bài tập Toán 12 Bài tập cuối chương 6 - Kết nối tri thức
Bài 6.22 trang 48 SBT Toán 12 Tập 2: Có 3 hộp, mỗi hộp chứa 3 tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
A: “Tổng số ghi trên các tấm thẻ là 6”;
B: “Ba tấm thẻ có số ghi bằng nhau”.
Tính P(A | B), P(B | A).
Lời giải:
Ta có: Ω = {(a, b, c); 1 ≤ a, b, c ≤ 3}, suy ra n(Ω) = 3.3.3 = 27.
Ta có: A = {(1; 2; 3); (1; 3; 2); (2; 1; 3); (2; 3; 1); (3; 1; 2); (3; 2; 1); (2; 2; 2)}.
Do đó n(A) = 7, suy ra P(A) = .
B = {(1; 1; 1); (2; 2; 2); (3; 3; 3)}.
Do đó, n(B) = 3, suy ra P(B) = .
Có A ∩ B ={(2; 2; 2)}, suy ra P(AB) = .
Như vậy, P(A | B) = ;
P(B | A) = .
Lời giải Sách bài tập Toán lớp 12 Bài tập cuối chương 6 hay khác: