Cho đa thức Q(x) = ax^2 + bx + c (a ≠ 0). Chứng minh rằng nếu Q(x) nhận 1 và –1 là nghiệm thì a và c là hai số đối nhau
Cho đa thức Q(x) = ax + bx + c (a ≠ 0). Chứng minh rằng nếu Q(x) nhận 1 và –1 là nghiệm thì a và c là hai số đối nhau.
Giải sách bài tập Toán lớp 7 Bài tập cuối chương 6
Bài 63 trang 56 sách bài tập Toán lớp 7 Tập 2: Cho đa thức Q(x) = ax2 + bx + c (a ≠ 0). Chứng minh rằng nếu Q(x) nhận 1 và –1 là nghiệm thì a và c là hai số đối nhau.
Lời giải:
Xét đa thức Q(x) = ax2 + bx + c (a ≠ 0).
• Tại x = 1 ta có:
Q(1) = a . 12 + b . 1 + c = a + b + c.
Theo bài Q(x) nhận 1 là nghiệm nên Q(1) = 0.
Do đó a + b + c = 0 (1).
• Tại x = –1 ta có:
Q(–1) = a . (–1)2 + b . (–1) + c = a – b + c.
Theo bài Q(x) nhận –1 là nghiệm nên Q(–1) = 0.
Do đó a – b + c = 0 (2)
• Cộng vế theo vế của (1) và (2) ta được:
(a + b + c) + (a – b + c) = 0
a + b + c + a – b + c = 0
2a + 2c = 0
a + c = 0
a = – c.
Do đó a và c là hai số đối nhau.
Vậy a và c là hai số đối nhau.