X

SBT Toán 7 Kết nối tri thức

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36)


Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN ⊥ CM.

Giải SBT Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 4.34 trang 65 sách bài tập Toán lớp 7 Tập 1: Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36). Chứng minh rằng BN = CM và BN ⊥ CM.

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36)

Lời giải:

Vì ABCD là hình vuông nên AB = BC = CD = DA.

Vì N là trung điểm của AD nên AN = ND = AD2.

Vì M là trung điểm của AB nên AM = MB = AB2.

Mà AB = AD nên AN = BM.

Xét ∆ANB và ∆BMC có:

AN = BM (chứng minh trên)

AB = BC (chứng minh trên)

NAB^=MBC^ = 90° (do ABCD là hình vuông)

Do đó, ∆ANB = ∆BMC (hai cạnh góc vuông)

Suy ra, BN = CM (hai cạnh tương ứng).

Gọi E là giao điểm của BN và CM.

Cho hình vuông ABCD. Gọi M và N lần lượt là trung điểm của AB và AD (H.4.36)

Do ∆ANB = ∆BMC nên EMB^=CMB^=BNA^.

Từ định lí tổng ba góc trong tam giác BME và tam giác ABN, ta suy ra:

BEM^=180°-EMB^-MBE^=180°-BNA^-ABN^=BAN^=90°.

Vậy BN vuông góc với CM tại E.

Xem thêm các bài giải sách bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác: