Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng
Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:
Giải SBT Toán 7 Kết nối tri thức Bài 15: Các trường hợp bằng nhau của tam giác vuông
Bài 4.38 trang 66 sách bài tập Toán lớp 7 Tập 1: Cho bốn điểm A, B, C, D như Hình 4.40, trong đó AB = DC. Chứng minh rằng:
a) AC = BD.
b) AD // BC.
Lời giải:
Gọi giao điểm của AC và BD là O.
a) Xét ∆ABC và ∆DCB có:
(giả thiết)
AB = CD (giả thiết)
BC chung
Do đó, ∆ABC = ∆DCB (cạnh huyền – cạnh góc vuông).
Suy ra, AC = BD (hai cạnh tương ứng).
b) Vì ∆ABC = ∆DCB nên (hai góc tương ứng)
Xét tam giác OBC có:
= 180°.
Mà do nên = 180°
Suy ra = 180° –
Do đó, (1)
Xét ∆ABD và ∆DCA có:
AB = CD (giả thiết)
BD = AC (chứng minh trên)
AD chung
Do đó, ∆ABD = ∆DCA (c – c – c).
Suy ra, .
Xét tam giác OAD có:
= 180°.
Mà do nên = 180°
Suy ra = 180° –
Do đó, (2)
Mà (hai góc đối đỉnh) (3)
Từ (1), (2), (3) suy ra, hay .
Mà hai góc này ở vị trí so le trong nên AD // BC.