Cho hình thang vuông ABCD góc A = góc D = 90 độ có AB = 4 cm, BC = 13 cm, CD = 9 cm
Cho hình thang vuông ABCD có AB = 4 cm, BC = 13 cm, CD = 9 cm.
Giải SBT Toán 9 Bài 2: Vị trí tương đối của đường thẳng và đường tròn - Cánh diều
Bài 13 trang 106 SBT Toán 9 Tập 1: Cho hình thang vuông ABCD có AB = 4 cm, BC = 13 cm, CD = 9 cm.
a) Tính độ dài đoạn thẳng AD.
b) Đường thẳng AD có tiếp xúc với đường tròn đường kính BC hay không? Vì sao?
Lời giải:
Kẻ BH vuông góc với CD tại H, gọi I là trung điểm của đoạn thẳng BC, kẻ IK vuông góc với AD tại K, gọi M là giao điểm của IK và BH.
Do IK ⊥ AD nên
ABCD là hình thang vuông có nên AB ⊥ AD, CD ⊥ AD.
Mà IK ⊥ AD nên IK // AB // CD.
Lại có BH ⊥ CD nên BH ⊥ IK tại M.
Tứ giác ABHD có suy ra ABHD là hình chữ nhật.
Tứ giác ABMK có suy ra ABMK là hình chữ nhật.
a) Do tứ giác ABHD là hình chữ nhật nên AD = BH và DH = AB = 4 cm.
Ta có: CH = CD ‒ DH = 9 – 4 = 5 cm.
Xét ∆BCH vuông tại H, theo định lí Pythagore, ta có: BC2 = BH2 + CH2
Suy ra
Vậy AD = BH = 12 cm.
b) Ta có đường tròn đường kính BC có tâm I và bán kính
Khoảng cách từ tâm I đến AD là d = IK.
Do tứ giác ABMK là hình chữ nhật nên KM = AB = 4 cm.
Xét ∆BCH có I là trung điểm của BC và IM // CH nên IM là đường trung bình của tam giác, do đó
Ta có: IK = KM + IM = 4 + 2,5 = 6,5 cm.
Do đó d = IM = R = 6,5 cm.
Vậy đường thẳng AD tiếp xúc với đường tròn đường kính BC.
Lời giải SBT Toán 9 Bài 2: Vị trí tương đối của đường thẳng và đường tròn hay khác: