Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d? A. x/5 + y/3 = 1; B. y= - 3/5x + 3; C. x = t\\y = 5; D. x = 5 - 5/3t\\y = t
Câu hỏi:
Cho đường thẳng d: 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một phương trình khác của d?
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
⦁ Ta có 3x + 5y – 15 = 0.
⇔ 3x + 5y = 15.
\( \Leftrightarrow \frac{3}{{15}}x + \frac{5}{{15}}y = \frac{{15}}{{15}}\)
\( \Leftrightarrow \frac{x}{5} + \frac{y}{3} = 1\).
Suy ra phương án A đúng.
⦁ Ta có 3x + 5y – 15 = 0.
⇔ 5y = –3x + 15.
\( \Leftrightarrow y = - \frac{3}{5}x + 3\).
Suy ra phương án B đúng.
⦁ Đường thẳng d có vectơ pháp tuyến \(\vec n = \left( {3;5} \right)\).
Suy ra đường thẳng d có vectơ chỉ phương là \(\vec u = \left( { - 5;3} \right)\).
Ở phương án C, ta có vectơ chỉ phương \({\vec u_1} = \left( {1;0} \right)\).
Vì \(\frac{1}{{ - 5}} \ne \frac{0}{3}\) nên \({\vec u_1}\) không cùng phương với \(\vec u\).
Ở phương án D, ta có vectơ chỉ phương \({\vec u_2} = \left( { - \frac{5}{3};1} \right) = \frac{1}{3}\left( { - 5;3} \right) = \frac{1}{3}\vec u\).
Suy ra \({\vec u_2}\) cùng phương với \(\vec u\).
Do đó phương án C sai, phương án D đúng.
Vậy ta chọn phương án C.