Cho đường tròn (C): (x – 2)^2 + (y – 2)^2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là: A. x + y – 4 = 0 hoặc x – y – 2 = 0; B. x = 5 hoặc y = –1; C. 2x – y – 3 = 0 hoặc 3x


Câu hỏi:

Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:

A. x + y – 4 = 0 hoặc x – y – 2 = 0;
B. x = 5 hoặc y = –1;
C. 2x – y – 3 = 0 hoặc 3x + 2y – 2 = 0;
D. 3x – 2y – 2 = 0 hoặc 2x + 3y + 5 = 0.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: B

Đường tròn (C) có tâm I(2; 2), bán kính R = 3.

Gọi d là tiếp tuyến cần tìm có vectơ pháp tuyến \(\vec n = \left( {A;B} \right)\).

Vì d đi qua điểm A(5; –1) nên phương trình d có dạng: A(x – 5) + B(y + 1) = 0.

Ax + By – 5A + B = 0.

Vì d là tiếp tuyến của (C) nên ta có d(I, d) = R.

\( \Leftrightarrow \frac{{\left| {A.2 + B.2 - 5A + B} \right|}}{{\sqrt {{A^2} + {B^2}} }} = 3\)

\( \Leftrightarrow \left| { - 3A + 3B} \right| = 3\sqrt {{A^2} + {B^2}} \)

9A2 – 18AB + 9B2 = 9(A2 + B2)

AB = 0.

A = 0 hoặc B = 0.

Với A = 0, ta chọn B = 1.

Suy ra phương trình d: y + 1 = 0 y = –1.

Với B = 0, ta chọn A = 1.

Suy ra phương trình d: x – 5 = 0 x = 5.

Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán có phương trình là: y = –1 hoặc x = 5.

Do đó ta chọn phương án B.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Với giá trị nào của m thì phương trình x2 + y2 – 2(m + 2)x + 4my + 19m – 6 = 0 là phương trình đường tròn?

Xem lời giải »


Câu 2:

Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:

Xem lời giải »


Câu 3:

Đường tròn tâm I(1; 4) và đi qua điểm B(2; 6) có phương trình là:

Xem lời giải »


Câu 4:

Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:

Xem lời giải »