Cho đường tròn (C): (x – 2)^2 + (y – 2)^2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là: A. x + y – 4 = 0 hoặc x – y – 2 = 0; B. x = 5 hoặc y = –1; C. 2x – y – 3 = 0 hoặc 3x
Câu hỏi:
Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (C) có tâm I(2; 2), bán kính R = 3.
Gọi d là tiếp tuyến cần tìm có vectơ pháp tuyến \(\vec n = \left( {A;B} \right)\).
Vì d đi qua điểm A(5; –1) nên phương trình d có dạng: A(x – 5) + B(y + 1) = 0.
⇔ Ax + By – 5A + B = 0.
Vì d là tiếp tuyến của (C) nên ta có d(I, d) = R.
\( \Leftrightarrow \frac{{\left| {A.2 + B.2 - 5A + B} \right|}}{{\sqrt {{A^2} + {B^2}} }} = 3\)
\( \Leftrightarrow \left| { - 3A + 3B} \right| = 3\sqrt {{A^2} + {B^2}} \)
⇔ 9A2 – 18AB + 9B2 = 9(A2 + B2)
⇔ AB = 0.
⇔ A = 0 hoặc B = 0.
Với A = 0, ta chọn B = 1.
Suy ra phương trình d: y + 1 = 0 ⇔ y = –1.
Với B = 0, ta chọn A = 1.
Suy ra phương trình d: x – 5 = 0 ⇔ x = 5.
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán có phương trình là: y = –1 hoặc x = 5.
Do đó ta chọn phương án B.