Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng Delta : 3x + y + 3 = 0 bằng: A. 2 căn bậc hai của 10; B. 3/ căn bậc hai của 5; C. căn bậc hai của
Câu hỏi:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng \[\Delta \]: 3x + y + 3 = 0 bằng:
A. \[2\sqrt {10} \];
B. \[\frac{{3\sqrt {10} }}{5}\];
C. \[\frac{{\sqrt {10} }}{5}\];
D. 2.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
+) Giao điểm của hai đường thẳng:
Ta có: \[\left\{ \begin{array}{l}x - 3y + 4 = 0\\2x + 3y - 1 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = - 1\\y = 1\end{array} \right.\], vậy điểm A (–1; 1) là giao điểm của hai đường thẳng
+) Khoảng cách từ A đến \[\Delta \]: 3x + y + 3 = 0 :
\[d\left( {A;\Delta } \right) = \frac{{\left| {3.( - 1) + 1.1 + 3} \right|}}{{\sqrt {9 + 1} }} = \frac{1}{{\sqrt {10} }}\]
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 2 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Xem lời giải »
Câu 2:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x – 2y – 3 = 0 và \[{d_2}\]: 6x – 2y – 8 = 0
Xem lời giải »
Câu 3:
Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\] và \[{d_2}\]: 3x + 4y – 8 = 0.
Xem lời giải »
Câu 4:
Tìm m để hai đường thẳng d1 và d2 vuông góc với nhau:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + mt\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + \left( {4 + m} \right)t'\end{array} \right.\].
Xem lời giải »
Câu 5:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Xem lời giải »
Câu 6:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Xem lời giải »