Trong mặt phẳng tọa độ Oxy, cho vec a = ( 2;1), vec b = ( 3;4 ), vec c = ( - 7;2). Nếu vec x - 2vec a = vec b - 3vec c thì: A. vec x =( 28;2); B. vec x = ( 13;5); C. vec x = ( 16;4); D.


Câu hỏi:

Trong mặt phẳng tọa độ Oxy, cho \(\vec a = \left( {2;1} \right),\,\,\vec b = \left( {3;4} \right),\,\,\vec c = \left( { - 7;2} \right)\). Nếu \(\vec x - 2\vec a = \vec b - 3\vec c\) thì:

A. \(\vec x = \left( {28;2} \right)\);
B. \(\vec x = \left( {13;5} \right)\);
C. \(\vec x = \left( {16;4} \right)\);
D. \(\vec x = \left( {28;0} \right)\).

Trả lời:

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(\vec x - 2\vec a = \vec b - 3\vec c\).

Suy ra \(\vec x = 2\vec a + \vec b - 3\vec c\).

Ta có: \(2\vec a = \left( {2.2;2.1} \right) = \left( {4;2} \right)\);

Suy ra \(2\vec a + \vec b = \left( {4 + 3;2 + 4} \right) = \left( {7;6} \right)\).

Lại có \(3\vec c = \left( {3.\left( { - 7} \right);3.2} \right) = \left( { - 21;6} \right)\).

Khi đó \(\vec x = 2\vec a + \vec b - 3\vec c = \left( {7 - \left( { - 21} \right);6 - 6} \right) = \left( {28;0} \right)\).

Vậy \(\vec x = \left( {28;0} \right)\).

Do đó ta chọn phương án D.

Xem thêm bài tập Toán 10 CD có lời giải hay khác:

Câu 1:

Trong mặt phẳng tọa độ Oxy, cho hai điểm B(–1; 3) và C(5; 2). Tọa độ của \(\overrightarrow {BC} \) là:

Xem lời giải »


Câu 2:

Phương trình tham số của đường thẳng ∆ đi qua điểm H(1; 3) và có vectơ pháp tuyến \(\vec n = \left( {2;5} \right)\) là:

Xem lời giải »


Câu 3:

Khoảng cách từ điểm M(1; –1) đến đường thẳng ∆: \(\left\{ \begin{array}{l}x = 3 + 4t\\y = - 2 + 3t\end{array} \right.\) là:

Xem lời giải »


Câu 4:

Góc giữa hai đường thẳng \({\Delta _1}:2x + 2\sqrt 3 y + \sqrt 5 = 0\) và \({\Delta _2}:y - \sqrt 6 = 0\) là:

Xem lời giải »


Câu 5:

Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:

Xem lời giải »