Xác định parabol y = ax^2 + bx + c (a ≠ 0), biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; 12)
Câu hỏi:
Xác định parabol y = ax2 + bx + c (a ≠ 0), biết rằng parabol đó đi qua điểm A(8; 0) và có đỉnh là I(6; 12).
A. y = −3x2 – 36x + 96;
B. y = 3x2 – 36x + 96;
C. y = 3x2 + 36x – 96;
D. y = −3x2 + 36x – 96.
Trả lời:
Đáp án đúng là: D
Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(8; 0) nên:
a.82 + b.8 + c = 0 64a + 8b + c = 0 (1).
Đồ thị hàm số y = ax2 + bx + c có đỉnh là I(6; 12):
= 6 −b = 12a Û 12a + b = 0 (2).
a.62 + 6b + c = 12 Û 36a + 6b + c = 12 (3).
Lấy phương trình (1) trừ phương trình (3) vế theo vế, ta được phương trình:
28a + 2b = −12. (4)
Từ phương trình (2) và (4), ta có hệ phương trình:
.
Thay a = −3, b = 36 vào phương trình (1):
64.(−3) + 8.36 + c = 0 Þ c = −96.
Vậy a = −3, b = 36, c = −96.
Vậy hàm số cần tìm là y = −3x2 + 36x – 96.
Xem thêm bài tập Toán 10 CD có lời giải hay khác:
Câu 1:
Cho hàm số y = với m là tham số. Tìm m để hàm số xác định trên (0; 1).
Xem lời giải »
Câu 2:
Để phương trình |x + 3|(x – 2) + m – 1 = 0 có đúng một nghiệm, các giá trị của tham số m là:
Xem lời giải »
Câu 3:
Một kĩ sư thiết kế đường dây điện từ vị trí A đến vị trí S và từ vị trí S đến vị trí C trên cù lao như hình dưới đây. Tiền công thiết kế mỗi ki-lô-mét đường dây từ A đến S và từ S đến C lần lượt là 4 triệu đồng và 6 triệu đồng. Biết tổng số tiền công là 25 triệu đồng. Tính tổng số ki-lô-mét đường dây điện đã thiết kế.
Xem lời giải »
Câu 4:
Bất phương trình mx2 – (2m – 1)x + m + 1 < 0 vô nghiệm khi và chỉ khi
Xem lời giải »