X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:


Câu hỏi:

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:

A. x + 3y – 7 = 0;            

B. 3x + y – 7 = 0;            

C. 3x + y – 5 = 0;            

D. x + 3y – 5 = 0.

Trả lời:

Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là: (ảnh 1)

Vì ∆ABC có AM là đường trung tuyến nên M là trung điểm BC.

Ta suy ra {xM=xB+xC2=432=12yM=yB+yC2=5+22=72

Khi đó ta có M(12;72)

Với A(2; –1)M(12;72)  ta có: AM=(32;92)23AM=(1;3)

Đường thẳng AM có vectơ chỉ phương u=23AM=(1;3)  nên đường thẳng AM nhận n=(3;1)  làm vectơ pháp tuyến.

Đường thẳng AM đi qua A(2; –1), có vectơ pháp tuyến n=(3;1)

Suy ra phương trình tổng quát của đường thẳng AM là:

3.(x – 2) + 1.(y + 1) = 0

3x + y – 5 = 0.

Vậy ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Trong mặt phẳng Oxy, cho ∆ABC có A(–4; 1), B(2; 4), C(2; –2). Tọa độ trọng tâm I của ∆ABC là:

Xem lời giải »


Câu 2:

Cho u=(4;5)  và v=(3;a)  . Tìm a để uv

Xem lời giải »


Câu 3:

Trong mặt phẳng Oxy, cho ba điểm A(–1; 1), B(1; 3), C(5; 2). Tọa độ điểm D là đỉnh thứ tư của hình bình hành ABCD là:

Xem lời giải »


Câu 4:

Cho hai điểm A(6; –1) và B(x; 9). Giá trị của x để khoảng cách giữa A và B bằng  là:

Xem lời giải »


Câu 5:

Giao điểm M của hai đường thẳng (d): {x=12ty=3+5t  và (d’): 3x – 2y – 1 = 0 là:

Xem lời giải »


Câu 6:

Cặp đường thẳng nào sau đây vuông góc với nhau?

Xem lời giải »


Câu 7:

Cho đường thẳng (d): x – 2y + 5 = 0. Mệnh đề nào sau đây đúng?

Xem lời giải »


Câu 8:

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

Xem lời giải »