X

Toán lớp 10 Chân trời sáng tạo

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:


Câu hỏi:

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:

A. A(43;73)

B. A(43;73)

C. A(43;73)

D. A(43;73)

Trả lời:

Đáp án đúng là: A

Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là: (ảnh 1)

Đường cao BH: x – y + 2 = 0 có vectơ pháp tuyến là nBH=(1;1)

Vì BH là đường cao của ∆ABC nên BH AC.

Suy ra vectơ pháp tuyến của BH là vectơ chỉ phương của AC.

Do đó vectơ chỉ phương của AC là uAC=nBH=(1;1)

Vì vậy AC có vectơ pháp tuyến là nAC=(1;1)

Đường thẳng AC đi qua C(–1; 2), có vectơ pháp tuyến . nAC=(1;1)

Suy ra phương trình AC: 1(x + 1) + 1(y – 2) = 0.

x + y – 1 = 0.

Ta có A là giao điểm của AC và AN.

Do đó tọa độ của điểm A là nghiệm của hệ phương trình: {x+y1=02xy+5=0{x=43y=73

Khi đó ta có A(43;73)

Vậy ta chọn phương án A.


 

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Một đường thẳng có bao nhiêu vectơ pháp tuyến?

Xem lời giải »


Câu 2:

Đường thẳng d có một vectơ chỉ phương là u=(3;4). Đường thẳng ∆ vuông góc với d có một vectơ pháp tuyến là:

Xem lời giải »


Câu 3:

Vectơ nào sau đây là một vectơ chỉ phương của Δ:{x=512ty=3+3t

Xem lời giải »


Câu 4:

Cho hai điểm A(4; 0), B(0; 5). Phương trình nào sau đây không phải là phương trình của đường thẳng AB?

Xem lời giải »