X

Toán lớp 10 Chân trời sáng tạo

Cho hai tập khác rỗng A = (m – 1; 4], B = (–2; 2m + 2), m ∈ ℝ. Tìm m để A ∩ B ≠ ∅. A. –1 < m < 5;   B. 1 < m < 5;     C. –2 < m < 5;    D. m > –


Câu hỏi:

Cho hai tập khác rỗng A = (m – 1; 4], B = (–2; 2m + 2), m ℝ. Tìm m để A ∩ B ≠ .

A. –1 < m < 5;
B. 1 < m < 5;
C. –2 < m < 5;
D. m > –3.

Trả lời:

Hướng dẫn giải

Đáp án đúng là: C

Vì tập A khác rỗng nên ta có m – 1 < 4.

Û m < 5 (1)

Vì tập B khác rỗng nên ta có –2 < 2m + 2.

Û –4 < 2m.

Û m > –2 (2)

Từ (1) và (2), ta suy ra tập hợp A và B đều khác rỗng khi và chỉ khi –2 < m < 5 (*).

Để A ∩ B ≠ thì m – 1 < 2m + 2.

 Nghĩa là, m > –3   (**).

Giao (*) và (**) lại với nhau, ta thu được kết quả –2 < m < 5.

Vậy ta chọn phương án C.

Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:

Câu 1:

Cho tập hợp A={xR|2xx2+11}; B là tập hợp tất cả các giá trị nguyên của b sao cho phương trình x2 – 2bx + 4 = 0 vô nghiệm. Số phần tử chung của hai tập hợp trên là:

Xem lời giải »


Câu 2:

Cho ba tập hợp A = [–2; 2], B = [1; 5], C = [0; 1]. Khi đó tập (A \ B) ∩ C là:

Xem lời giải »


Câu 3:

Cho A = {x ℝ | x + 2 ≥ 0}, B = {x ℝ | 5 – x ≥ 0}. Khi đó A \ B là:

Xem lời giải »


Câu 4:

Một lớp học có 25 học sinh giỏi môn Toán, 23 học sinh giỏi môn Lý, 14 học sinh giỏi cả môn Toán và Lý và có 6 học sinh không giỏi môn nào cả. Hỏi lớp đó có bao nhiêu học sinh?

Xem lời giải »