Có bao nhiêu giá trị nguyên của tham số m ∈ [–3; 3] để hàm số f(x) = (m + 1)x + m – 2 đồng biến trên ℝ? A. 7; B. 5; C. 4; D. 3.
Câu hỏi:
Có bao nhiêu giá trị nguyên của tham số m ∈ [–3; 3] để hàm số f(x) = (m + 1)x + m – 2 đồng biến trên ℝ?
A. 7;
B. 5;
C. 4;
D. 3.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Hàm số đã cho có tập xác định D = ℝ.
Vì hàm số đồng biến trên ℝ nên ta có ∀x1, x2 ∈ D, x1 < x2, suy ra f(x1) < f(x2).
Tức là, (m + 1)x1 + m – 2 < (m + 1)x2 + m – 2.
Do đó (m + 1)(x1 – x2) < 0 (1)
Vì x1 < x2 nên x1 – x2 < 0.
Khi đó (1) tương đương với: m + 1 > 0 hay m > –1.
Mà m ∈ [–3; 3] và m nhận giá trị nguyên.
Nên ta có m ∈ {0; 1; 2; 3}.
Vậy có 4 giá trị nguyên m thỏa yêu cầu bài toán.
Do đó ta chọn phương án C.
Xem thêm bài tập trắc nghiệm Toán 10 CTST có lời giải hay khác:
Câu 1:
Tập xác định của hàm số \(y = f\left( x \right) = \frac{{{x^2} - \sqrt {2 - x} }}{{\left( {{x^2} - x} \right)\sqrt {x + 1} }}\) là:
Xem lời giải »
Câu 2:
Tìm m để hàm số \(y = \frac{{\sqrt {x - 2m + 3} }}{{x - m}} + \frac{{3x - 1}}{{\sqrt { - x + m + 5} }}\) xác định trên khoảng (0; 1).
Xem lời giải »
Câu 3:
Biết rằng hàm số y = f(x) = x3 + 2x + 1 đồng biến trên ℝ. Đặt \(A = {\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)^3} + 2\left( {\frac{{{x^2} + 3}}{{{x^2} + 1}}} \right)\) và \(B = \frac{8}{{{{\left( {{x^2} + 1} \right)}^3}}} + \frac{4}{{{x^2} + 1}}\). Khẳng định nào sau đây đúng?
Xem lời giải »
Câu 4:
Gia đình bạn Hoa thuê nhà với giá 5 triệu đồng/tháng và gia đình bạn Hoa phải trả tiền dịch vụ là 1 triệu đồng (tiền dịch vụ chỉ trả một lần khi kết thúc hợp đồng thuê nhà). Gọi x (tháng) là khoảng thời gian gia đình bạn Hoa làm hợp đồng thuê nhà, y (đồng) là số tiền gia đình bạn Hoa cần chi ra trong x tháng. Em hãy viết công thức liên hệ giữa y và x.
Xem lời giải »