Có năm đoạn thẳng có độ dài lần lượt là 1 cm, 3 cm, 5 cm, 7 cm và 9 cm
Câu hỏi:
Có năm đoạn thẳng có độ dài lần lượt là 1 cm, 3 cm, 5 cm, 7 cm và 9 cm. Chọn ngẫu nhiên ba đoạn thẳng trong số năm đoạn thẳng trên. Xác suất để ba đoạn thẳng được chọn lập thành một tam giác là:
A.
B.
C.
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Chọn ngẫu nhiên ba đoạn thẳng trong số năm đoạn thẳng và không tính đến thứ tự thì có cách chọn.
Suy ra số phần tử của không gian mẫu là: n(Ω) = 10.
Gọi biến cố S: “Ba đoạn thẳng được chọn lập thành một tam giác”.
Theo bất đẳng thức tam giác, ta có trong một tam giác, tổng độ dài hai cạnh bất kì luôn lớn hơn độ dài cạnh còn lại.
Trong năm đoạn thẳng trên, ta thấy các đoạn thẳng sau lập thành một tam giác:
⦁ 3 cm; 5 cm và 7 cm;
⦁ 3 cm; 7 cm và 9 cm;
⦁ 5 cm; 7 cm và 9 cm.
Suy ra biến cố S có ba kết quả thuận lợi hay n(S) = 3.
Vậy xác suất của biến cố S là: .
Ta chọn phương án C.