Mệnh đề nào sau đây là sai? A. Phương trình x^2 + bx + c = 0 có nghiệm tương đương b^2 – 4c ≥ 0; B. ; a>c, b>c tương đương a>c C. ∆ABC vuông tại A tương đương góc B + góc C = 90
Câu hỏi:
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
⦁ Phương trình x2 + bx + c = 0 có nghiệm Û ∆ ≥ 0.
Û b2 – 4c ≥ 0.
Do đó phương án A đúng.
⦁ Nếu {a>bb>c (hay a > b > c) thì a > c.
Do đó mệnh đề P Þ Q đúng (1)
Ta xét mệnh đề đảo Q Þ P: a > c ⇒{a>bb>c.
Ta chọn a, b, c sao cho Q đúng.
Chọn a = 4; c = 2; b = 1.
Vì 4 > 2 nên ta suy ra a > c, tức là Q đúng.
Khi đó ta có 4 > 2 ⇒{4>11>2.
Lúc này P vô lý vì 1 < 2.
Do đó Q đúng và P sai.
Vì vậy mệnh đề đảo Q Þ P sai (2)
Từ (1), (2), ta suy ra phương án B sai.
Đến đây ta có thể chọn phương án B.
⦁ Nếu ∆ABC vuông tại A thì ˆA=90∘.
∆ABC có: ˆA+ˆB+ˆC=180∘ (định lí tổng ba góc trong một tam giác).
Suy ra ˆB+ˆC=180∘ -ˆA=180∘ -90∘ =90∘.
Vì vậy mệnh đề P Þ Q đúng (3)
Nếu ˆB+ˆC=90∘ thì:
∆ABC có: ˆA+ˆB+ˆC=180∘ (định lí tổng ba góc trong một tam giác).
Suy ra ˆA=180∘ -ˆB+ˆC=180∘ -90∘ =90∘.
Do đó ∆ABC vuông tại A.
Vì vậy mệnh đề Q Þ P đúng (4)
Từ (1), (2), ta suy ra P Û Q.
Do đó phương án C đúng.
⦁ Ta có π ≈ 3,14 < 4.
Suy ra π2 ≈ 9,87 < 16.
Do đó P Þ Q đúng (5)
Ngược lại, ta có π2 ≈ 9,87 < 16.
Suy ra π ≈ 3,14 < 4.
Do đó Q Þ P đúng (6)
Từ (5), (6), ta suy ra P Û Q.
Do đó phương án D đúng.
Vậy ta chọn phương án B.