Trong khai triển nhị thức (2x^2 + 1/x)^n hệ số của x^3 là 2^2 C 1 n
Câu hỏi:
Trong khai triển nhị thức \({\left( {2{x^2} + \frac{1}{x}} \right)^n}\) hệ số của x3 là \({2^2}C_n^1\) Giá trị của n là
A. n = 2;
B. n = 3;
C. n = 4;
D. n = 5.
Trả lời:
Đáp án đúng là: B
Khai triển nhị thức
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là \(C_n^k\)an – k .bk (k ≤ n)
Thay a = 2x2, b = \(\frac{1}{x}\) vào trong công thức ta có
\(C_n^k\)(2x2)n – k \({\left( {\frac{1}{x}} \right)^k}\)= (2)n-k\(C_n^k\)(x)2n –3k
Vì hệ số của số hạng chứa x3 là \({2^2}C_n^1\) nên ta có k = 1
Số hạng cần tìm chứa x3 nên ta có 2n – 3.1 = 3
Vậy n = 3 thoả mãn bài toán