Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Câu hỏi:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
A. C(–9; 6);
B. C(6; 9);
C. C(7; –2);
D. Cả A, C đều đúng.
Trả lời:
Với A(–1; 2). B(2; 1) ta có:
Đường thẳng AB có vectơ chỉ phương nên đường thẳng AB nhận làm vectơ pháp tuyến.
Đường thẳng AB đi qua B(2; 1), có vectơ pháp tuyến nên có phương trình tổng quát là:
1.(x – 2) + 3.(y – 1) = 0 ⇔ x + 3y – 5 = 0.
Vì C ∈ d nên ta có xC + 2yC – 3 = 0.
Suy ra xC = 3 – 2yC
Khi đó ta có C(3 – 2yC; yC)
Gọi CH là đường cao của ∆ABC.
Ta suy ra CH = d(C, AB) =
Ta có S∆ABC = 2.
⇔ |yC – 2| = 4
⇔ yC – 2 = 4 hoặc yC – 2 = –4.
⇔ yC = 6 hoặc yC = –2.
• Với yC = 6, ta có: xC = 3 – 2yC = 3 – 2.6 = –9.
Suy ra C(–9; 6).
• Với yC = –2, ta có: xC = 3 – 2yC = 3 – 2.( –2) = 7.
Suy ra C(7; –2).
Vậy có hai điểm C thỏa mãn yêu cầu bài toán là C(–9; 6), C(7; –2).
Do đó ta chọn phương án D.