Cho điểm A(−1; 0); B(1; 2); C(3; 3). Tìm điểm D thuộc đường thẳng AB sao cho CD = 5
Câu hỏi:
Cho điểm A(−1; 0); B(1; 2); C(3; 3). Tìm điểm D thuộc đường thẳng AB sao cho CD = 5
A. D(-1; 0);
B. D(6; 7);
C. D1(-1; 0) , D2(6; 7);
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có: = 2(1; 1)
Đường thẳng AB nhận vectơ làm vectơ chỉ phương.
Phương trình tham số của đường thẳng đi qua điểm A(−1; 0) và nhận vectơ làm vectơ chỉ phương là: .
Vì điểm D thuộc đường thẳng AB nên toạ độ điểm M có dạng D(−1 + t; t).
Ta có: CD = = 5
⇔ = 25
⇔ 2t2 – 14t = 0
⇔.
Với 2 giá trị của t tương ứng có 2 toạ độ của điểm D thoả mãn là: D1(− 1; 0) , D2(6; 7).