Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến vecto n ( a;b ). Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
Câu hỏi:
Cho điểm M(x0; y0) và đường thẳng ∆: ax + by + c = 0 có vectơ pháp tuyến \(\overrightarrow n \left( {a;\,b} \right)\). Gọi H là hình chiếu vuông góc của M trên ∆ (H.7.9).
a) Chứng minh rằng \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\).
b) Giả sử H có tọa độ (x1; y1). Chứng minh rằng: \(\overrightarrow n .\overrightarrow {HM} \) = a(x0 – x1) + b(y0 – y1) = ax0 + by0 + c.
c) Chứng minh rằng \(HM = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).
Trả lời:
Hướng dẫn giải
a) Do H là hình chiếu của M lên ∆ nên MH ⊥ ∆.
Vectơ \(\overrightarrow n \) là vectơ pháp tuyến của ∆ nên giá của vectơ \(\overrightarrow n \) vuông góc với ∆.
Khi đó đường thẳng MH song song hoặc trùng với giá của vectơ \(\overrightarrow n \) nên hai vectơ \(\overrightarrow {HM} \) và \(\overrightarrow n \) cùng phương.
Do đó hai vectơ \(\overrightarrow {HM} \) và \(\overrightarrow n \)cùng hướng hoặc ngược hướng.
+) Nếu hai vectơ \(\overrightarrow {HM} \) và \(\overrightarrow n \)cùng hướng thì \(\overrightarrow n .\overrightarrow {HM} = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\).
+) Nếu hai vectơ \(\overrightarrow {HM} \) và \(\overrightarrow n \)ngược hướng thì \(\overrightarrow n .\overrightarrow {HM} = - \left| {\overrightarrow n } \right|.\left| {\overrightarrow {HM} } \right| = - \sqrt {{a^2} + {b^2}} .HM\).
Vậy \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\).
b) Vì H thuộc ∆ nên tọa độ của H thỏa mãn phương trình ∆, thay tọa độ của H vào phương trình ∆ ta được: ax1 + by1 + c = 0 ⇔ c = – ax1 – by1 (1).
Ta lại có: \(\overrightarrow {HM} = \left( {{x_0} - {x_1};{y_0} - {y_1}} \right)\).
Suy ra: \(\overrightarrow n .\overrightarrow {HM} = a\left( {{x_0} - {x_1}} \right) + b\left( {{y_0} - {y_1}} \right)\)= ax0 + by0 – ax1 – by1 (2).
Từ (1) và (2) suy ra: \(\overrightarrow n .\overrightarrow {HM} = a\left( {{x_0} - {x_1}} \right) + b\left( {{y_0} - {y_1}} \right)\)= ax0 + by0 + c.
c) Theo câu a) ta có: \(\left| {\overrightarrow n .\overrightarrow {HM} } \right| = \sqrt {{a^2} + {b^2}} .HM\).
Theo câu b) ta có: \(\overrightarrow n .\overrightarrow {HM} \) = ax0 + by0 + c.
Suy ra: |ax0 + by0 + c| = \(\sqrt {{a^2} + {b^2}} .HM\).
Vậy \(HM = \frac{{\left| {a{x_0} + b{y_0} + c} \right|}}{{\sqrt {{a^2} + {b^2}} }}\).