Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt,


Câu hỏi:

Nhân dịp nghỉ hè, Nam về quê ở với ông bà nội. Nhà ông bà nội có một ao cá có dạng hình chữ nhật ABCD với chiều dài AD = 15 m, chiều rộng AB = 12 m. Phần tam giác DEF là nơi ông bà nuôi vịt, AE = 5 m, CF = 6 m (H.7.11).

a) Chọn hệ trục tọa độ Oxy, có điểm O trùng với điểm B, các tia Ox, Oy tương ứng trùng với các tia BC, BA. Chọn 1 đơn vị độ dài trên mặt phẳng tọa độ tương ứng với 1 m trong thực tế. Hãy xác định tọa độ của các điểm A, B, C, D, E, F và viết phương trình đường thẳng EF.

b) Nam đứng ở vị trí B câu cá và có thể quăng lưỡi câu xa 10,7 m. Hỏi lưỡi câu có thể rơi vào nơi nuôi vịt hay không ?

Media VietJack

Trả lời:

Hướng dẫn giải

a) Đặt hệ trục tọa độ như hình vẽ sau:

Media VietJack

Vì B trùng với gốc tọa độ O nên B có tọa độ là (0; 0).

Vì ABCD là hình chữ nhật nên CD = AB = 12 m, BC = AD = 15 m.

Điểm A thuộc trục Oy và có AO = AB = 12 m nên A có tọa độ là (0; 12).

Điểm C thuộc trục Ox và có CO = CB = 15 m nên C có tọa độ là (15; 0).

Ta có: DC Ox (do DC BC), DA Oy (do DA AB) và DC = 12 m, DA = 15 m nên điểm D có tọa độ là (15; 12).

Từ E kẻ EH vuông góc với BC, H thuộc BC nên EH = AB = 12 m, lại có AE = 5 m, do đó điểm E có tọa độ là (5; 12).

Từ F kẻ FJ vuông góc với AB, J thuộc AB nên FJ = AD = 15 m, lại có CF = 6 m, do đó điểm F có tọa độ là (15; 6).

Vậy A(0; 12), B(0; 0), C(15; 0), D(15; 12), E(5; 12), F(15; 6).

Ta có: \[\overrightarrow {EF} = \left( {15 - 5;6 - 12} \right) = \left( {10; - 6} \right)\].

Chọn vectơ \(\overrightarrow u = \frac{1}{2}\overrightarrow {EF} = \left( {5; - 3} \right)\) làm vectơ chỉ phương của đường thẳng EF thì vectơ pháp tuyến của đường thẳng EF là \(\overrightarrow n = \left( {3;\,5} \right)\).

Đường thẳng EF đi qua điểm E(5; 12) và có một vectơ pháp tuyến là \(\overrightarrow n = \left( {3;\,5} \right)\), do đó phương trình đường thẳng EF là: 3(x – 5) + 5(y – 12) = 0 hay 3x + 5y – 75 = 0.

b) Áp dụng công thức tính khoảng cách, ta có khoảng cách từ B đến EF là:

\(d\left( {B,\,EF} \right) = \frac{{\left| {3.0 + 5.0 - 75} \right|}}{{\sqrt {{3^2} + {5^2}} }} = \frac{{75}}{{\sqrt {34} }}\)≈ 12,9 m.

Khoảng cách từ B đến EF là đường ngắn nhất từ B nơi Nam đứng đến EF, lưỡi câu có thể quăng xa 10,7 m và 10,7 m < 12,9 m nên lưỡi câu không thể rơi vào vị trí nuôi vịt.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

A. Các câu hỏi trong bài

Trong mặt phẳng tọa độ, mỗi đường thẳng đều có đối tượng đại số tương ứng, gọi là phương trình của nó. Vậy các yếu tố liên quan tới đường thẳng được thể hiện như thế nào qua phương trình tương ứng?

Xem lời giải »


Câu 2:

Trong mặt phẳng tọa độ, cho hai đường thẳng

1: x – 2y + 3 = 0,

2: 3x – y – 1 = 0.

a) Điểm M(1; 2) có thuộc cả hai đường thẳng nói trên hay không?

b) Giải hệ \(\left\{ \begin{array}{l}x - 2y + 3 = 0\\3x - y - 1 = 0\end{array} \right.\).

c) Chỉ ra mối quan hệ giữa tọa độ giao điểm của ∆1 và ∆2 với nghiệm của hệ phương trình trên.

Xem lời giải »


Câu 3:

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) ∆1: x + 4y – 3 = 0 và ∆2: x – 4y – 3 = 0;

b) ∆1: x + 2y – \(\sqrt 5 \)= 0 và ∆2: 2x + 4y – \(3\sqrt 5 \) = 0.

Xem lời giải »


Câu 4:

Hai đường thẳng ∆1 và ∆2 cắt nhau tạo thành bốn góc (H.7.6). Các số đo của bốn góc đó có mối quan hệ gì với nhau?
Media VietJack

Xem lời giải »


Câu 5:

B. Bài tập

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\) và ∆2: 6x + 2y\( - \sqrt 6 \) = 0.

b) d1: x \( - \sqrt 3 y\) + 2 = 0 và d2: \(\sqrt 3 \)x – 3y + 2 = 0.

c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0.

Xem lời giải »


Câu 6:

Tính góc giữa các cặp đường thẳng sau:

a) ∆1: \(\sqrt 3 x\) + y – 4 = 0 và ∆2: x + \(\sqrt 3 y\) + 3 = 0;

b) d1: \(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + 4t\end{array} \right.\) và d2: \(\left\{ \begin{array}{l}x = 3 + s\\y = 1 - 3s\end{array} \right.\)                 (t, s là các tham số).

Xem lời giải »


Câu 7:

Trong mặt phẳng tọa độ Oxy, cho điểm A(0; – 2) và đường thẳng ∆: x + y – 4 = 0.

a) Tính khoảng cách từ điểm A đến đường thẳng ∆.

b) Viết phương trình đường thẳng a đi qua điểm M(– 1; 0) và song song với ∆.

c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với ∆.

Xem lời giải »


Câu 8:

Trong mặt phẳng tọa độ, cho tam giác ABC có A(1; 0), B(3; 2) và C(– 2; – 1).

a) Tính độ dài đường cao kẻ từ đỉnh A của tam giác ABC.

b) Tính diện tích tam giác ABC.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2