Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán


Câu hỏi:

Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán (khoảng biến thiên, khoảng tứ phân vị, độ lệch chuẩn) sẽ thay đổi như thế nào nếu:

a) Nhân mỗi giá trị của mẫu số liệu với 2.

b) Cộng mỗi giá trị của mẫu số liệu với 2.

Trả lời:

Lời giải:

a) Gọi các giá trị dương của mẫu số liệu ban đầu theo thứ tự không giảm là:


Cho mẫu số liệu gồm 10 số dương không hoàn toàn giống nhau. Các số đo độ phân tán (ảnh 1)

Ta có n = 10 là số chẵn nên trung vị là giá trị trung bình của số thứ 5 và thứ 6.

Do đó Q1 là số thứ 3 và Q3 là số thứ 8.

a) Khi nhân mỗi giá trị của mẫu số liệu với 2 thì

+ Số lớn nhất tăng 2 lần và số nhỏ nhất tăng 2 lần nên khoảng biến thiên R tăng 2 lần.

Q1 và Q3 tăng 2 lần nên khoảng tứ phân vị ΔQ = Q3 Q1 tăng 2 lần.

+ Giá trị trung bình tăng 2 lần.

Nên độ lệch của mỗi giá trị so với giá trị trung bình |xix¯| cũng tăng 2 lần.

Suy ra  (xix¯)2tăng 4 lần.

Khi đó, phương sai tăng 4 lần.

Do đó độ lệch chuẩn tăng 2 lần.

Vậy các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị của dãy số liệu mới bằng hai lần các khoảng biến thiên, độ lệch chuẩn, khoảng tứ phân vị ban đầu.

b) Khi cộng mỗi giá trị của mẫu số liệu với 2 thì

+ Số lớn nhất tăng 2 đơn vị và số nhỏ nhất tăng 2 đơn vị.

Suy ra khoảng biến thiên R không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

Q1 và Q3 tăng 2 đơn vị nên khoảng tứ phân vị ΔQ = Q3 Q1 không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

+ Giá trị trung bình tăng 2 đơn vị

Nên độ lệch của mỗi giá trị so với giá trị trung bình |xix¯| không đổi vì phần tăng thêm bị triệt tiêu cho nhau.

Suy ra (xix¯)2 không đổi

Khi đó, phương sai không đổi.

Do đó độ lệch chuẩn không đổi.

Vậy khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn đều không đổi.

Xem thêm lời giải bài tập Toán 10 Kết nối tri thức hay, chi tiết:

Câu 1:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình:

Dưới đây là điểm trung bình môn học kì I của hai bạn An và Bình: (ảnh 1)

Điểm trung bình môn học kì của An và Bình đều là 8,0 nhưng rõ ràng Bình “học đều” hơn An. Có thể dùng những số đặc trưng nào để đo mức độ “học đều”?

Xem lời giải »


Câu 2:

Một cổ động viên đã thống kê điểm số mà hai câu lạc bộ Leicester City và Everton đạt được trong năm mùa giải Ngoại hạng Anh gần đây, từ mùa giải 2014 – 2015 đến mùa giải 2018 – 2019 như sau:

Leicester City: 41   81   44   47   52.

Everton: 47   47   61   49    54.

Cổ động viên cho rằng, Everton thi đấu ổn hơn Leicester City. Em có đồng ý với nhận định này không? Vì sao?

Xem lời giải »


Câu 3:

Mẫu số liệu sau cho biết chiều cao (đơn vị cm) của các bạn trong tổ:

163  159  172  167  165  168  170  161.

Tính khoảng biến thiên của mẫu số liệu này.

Xem lời giải »


Câu 4:

Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị 0C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:

Hà Nội: 23 25 28 28 32 33 35.

Điện Biên: 16 24 26 26 26 27 28.

a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.

b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?

c) Tính các tứ phân vị và hiệu Q3 – Q1 cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?

Xem lời giải »


Câu 5:

Từ mẫu số liệu về thuế thuốc lá của 51 thành phố tại một quốc gia, người ta tính được:

Giá trị nhỏ nhất bằng 2,5; Q1 = 36; Q2 = 60; Q3 = 100; giá trị lớn nhất bằng 205.

a) Tỉ lệ thành phố có thuế thuốc lá lớn hơn 36 là bao nhiêu?

b) Chỉ ra hai giá trị sao cho có 50% giá trị của mẫu số liệu nằm giữa hai giá trị này?

c) Tìm khoảng tứ phân vị của mẫu số liệu.

Xem lời giải »


Câu 6:

Mẫu số liệu sau đây cho biết cân nặng của 10 trẻ sơ sinh (đơn vị kg):

2,977          3,155          3,920          3,412          4,236

2,593          3,270          3,813          4,042          3,387.

Hãy tính khoảng biến thiên, khoảng tứ phân vị và độ lệch chuẩn cho mẫu số liệu này.

Xem lời giải »


Câu 7:

Tỉ lệ thất nghiệp ở một quốc gia vào năm 2007 (đơn vị %) được cho như sau:

7,8     3,2     7,7     8,7     8,6     8,4     7,2     3,6

5,0     4,4     6,7     7,0     4,5     6,0     5,4.

Hãy tìm các giá trị bất thường (nếu có) của mẫu số liệu trên.

Xem lời giải »


<<<<<<< HEAD ======= >>>>>>> 7de0ce75c76253c52280308e94cf2d713ccea5e2