Cho tam giác ABC. Chứng minh rằng: a) Nếu góc A nhọn thì
Câu hỏi:
Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì b2 + c2 > a2;
b) Nếu góc A tù thì b2 + c2 < a2;
c) Nếu góc A vuông thì b2 + c2 = a2.
Trả lời:
Theo định lí côsin, ta có: a2 = b2 + c2 – 2bc.cosA
Þ b2 + c2 – a2 = 2bc.cosA.
a) Nếu góc A nhọn thì cosA > 0 Þ 2bccosA > 0
Do đó: b2 + c2 – a2 = 2bc.cosA > 0.
Vậy b2 + c2 > a2 (đpcm).
b) Nếu góc A tù thì cosA < 0 Þ 2bccosA < 0
Do đó: b2 + c2 – a2 = 2bc.cosA < 0.
Vậy b2 + c2 < a2 (đpcm).
c) Nếu góc A vuông thì cosA = 0 Þ 2bccosA = 0
Do đó: b2 + c2 – a2 = 2bc.cosA = 0.
Vậy b2 + c2 = a2 (đpcm).