Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam
Câu hỏi:
Cho tam giác ABC có A(1; 1), B(1; – 3), C(– 5; 9). Bán kính đường tròn nội tiếp tam giác ABC gần với giá trị:
A. 694;
B. 26;
C. 27;
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Gọi M và N lần lượt là trung điểm của BC và AB.
Khi đó M( – 2; 3) và N(1; – 1).
Ta có: = (– 6; 8)
Phương trình đường trung trực của đoạn thẳng AC nhận = (3; – 4) làm vectơ pháp tuyến và đi qua N( 1; – 1) là: 3(x – 1) – 4(y + 1) = 0 ⇔ 3x – 4y – 7 = 0.
Ta có:
Phương trình đường trung trực của đoạn thẳng BC nhận = (1; – 2) làm vectơ pháp tuyến và đi qua M( – 2; 3) là: x + 2 – 2(y – 3) = 0 ⇔ x – 2y + 8 = 0.
Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó I là giao điểm của các đường trung trực nên tọa độ điểm I là nghiệm của hệ phương trình:
⇒ = (– 22; ) ⇒ IA = .